Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction

Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2021-10, Vol.16 (5), p.1827-1834
Hauptverfasser: Li, Jiayi, Wu, Xuannan, Hu, Qian, Ming, Yong, Hou, Yidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1834
container_issue 5
container_start_page 1827
container_title Plasmonics (Norwell, Mass.)
container_volume 16
creator Li, Jiayi
Wu, Xuannan
Hu, Qian
Ming, Yong
Hou, Yidong
description Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.
doi_str_mv 10.1007/s11468-020-01339-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574778252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574778252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9dhkMkmaZT9VqLip65DJvKmp81GTqdB_b9oRdSU8yCOce-BdhG4puaeEyFGgNBPjhKQkIZQxlagzNKCcy4Qqwc5_ds4v0VUIW0KyLBPZAL1PXeE82M61janwotgAnoRDXUPnncUrt3nr8NqbJtQuhAhh1-Bn6Ew1mjuoYvCIzeHTWcBTE6DAkfljmLuy9Obkv0YXpakC3Hy_Q_S6XKxnj8nq5eFpNlklllHVJVYpU-bARG7GUjAhpGRGCWEtN_G7UJCz3DBDrJCcQm5pnBIEBZUZUgo2RHe9d-fbjz2ETm_bvY_nBZ1ymUk5TnkaqbSnrG9D8FDqnXe18QdNiT6WqvtSdSxVn0rVKoZYHwoRbjbgf9X_pL4Ad4B7-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574778252</pqid></control><display><type>article</type><title>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Jiayi ; Wu, Xuannan ; Hu, Qian ; Ming, Yong ; Hou, Yidong</creator><creatorcontrib>Li, Jiayi ; Wu, Xuannan ; Hu, Qian ; Ming, Yong ; Hou, Yidong</creatorcontrib><description>Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-020-01339-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Beryllium ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Glass substrates ; Information systems ; Light diffraction ; Light transmission ; Nanotechnology ; Nanotechnology devices ; Subtraction ; Waveguides</subject><ispartof>Plasmonics (Norwell, Mass.), 2021-10, Vol.16 (5), p.1827-1834</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</citedby><cites>FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</cites><orcidid>0000-0002-9164-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-020-01339-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-020-01339-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Jiayi</creatorcontrib><creatorcontrib>Wu, Xuannan</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Ming, Yong</creatorcontrib><creatorcontrib>Hou, Yidong</creatorcontrib><title>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.</description><subject>Asymmetry</subject><subject>Beryllium</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Glass substrates</subject><subject>Information systems</subject><subject>Light diffraction</subject><subject>Light transmission</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Subtraction</subject><subject>Waveguides</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXA9dhkMkmaZT9VqLip65DJvKmp81GTqdB_b9oRdSU8yCOce-BdhG4puaeEyFGgNBPjhKQkIZQxlagzNKCcy4Qqwc5_ds4v0VUIW0KyLBPZAL1PXeE82M61janwotgAnoRDXUPnncUrt3nr8NqbJtQuhAhh1-Bn6Ew1mjuoYvCIzeHTWcBTE6DAkfljmLuy9Obkv0YXpakC3Hy_Q_S6XKxnj8nq5eFpNlklllHVJVYpU-bARG7GUjAhpGRGCWEtN_G7UJCz3DBDrJCcQm5pnBIEBZUZUgo2RHe9d-fbjz2ETm_bvY_nBZ1ymUk5TnkaqbSnrG9D8FDqnXe18QdNiT6WqvtSdSxVn0rVKoZYHwoRbjbgf9X_pL4Ad4B7-Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Jiayi</creator><creator>Wu, Xuannan</creator><creator>Hu, Qian</creator><creator>Ming, Yong</creator><creator>Hou, Yidong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9164-683X</orcidid></search><sort><creationdate>20211001</creationdate><title>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</title><author>Li, Jiayi ; Wu, Xuannan ; Hu, Qian ; Ming, Yong ; Hou, Yidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Beryllium</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Glass substrates</topic><topic>Information systems</topic><topic>Light diffraction</topic><topic>Light transmission</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Subtraction</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiayi</creatorcontrib><creatorcontrib>Wu, Xuannan</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Ming, Yong</creatorcontrib><creatorcontrib>Hou, Yidong</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiayi</au><au>Wu, Xuannan</au><au>Hu, Qian</au><au>Ming, Yong</au><au>Hou, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>1827</spage><epage>1834</epage><pages>1827-1834</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-020-01339-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9164-683X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1557-1955
ispartof Plasmonics (Norwell, Mass.), 2021-10, Vol.16 (5), p.1827-1834
issn 1557-1955
1557-1963
language eng
recordid cdi_proquest_journals_2574778252
source Springer Nature - Complete Springer Journals
subjects Asymmetry
Beryllium
Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Glass substrates
Information systems
Light diffraction
Light transmission
Nanotechnology
Nanotechnology devices
Subtraction
Waveguides
title Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20Edge%20Asymmetric%20Light%20Transmission%20in%20Metal/Dielectric%20Device%20Based%20on%20Asymmetric%20Diffraction&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Li,%20Jiayi&rft.date=2021-10-01&rft.volume=16&rft.issue=5&rft.spage=1827&rft.epage=1834&rft.pages=1827-1834&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-020-01339-9&rft_dat=%3Cproquest_cross%3E2574778252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574778252&rft_id=info:pmid/&rfr_iscdi=true