Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction
Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light...
Gespeichert in:
Veröffentlicht in: | Plasmonics (Norwell, Mass.) Mass.), 2021-10, Vol.16 (5), p.1827-1834 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1834 |
---|---|
container_issue | 5 |
container_start_page | 1827 |
container_title | Plasmonics (Norwell, Mass.) |
container_volume | 16 |
creator | Li, Jiayi Wu, Xuannan Hu, Qian Ming, Yong Hou, Yidong |
description | Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect. |
doi_str_mv | 10.1007/s11468-020-01339-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574778252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574778252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXA9dhkMkmaZT9VqLip65DJvKmp81GTqdB_b9oRdSU8yCOce-BdhG4puaeEyFGgNBPjhKQkIZQxlagzNKCcy4Qqwc5_ds4v0VUIW0KyLBPZAL1PXeE82M61janwotgAnoRDXUPnncUrt3nr8NqbJtQuhAhh1-Bn6Ew1mjuoYvCIzeHTWcBTE6DAkfljmLuy9Obkv0YXpakC3Hy_Q_S6XKxnj8nq5eFpNlklllHVJVYpU-bARG7GUjAhpGRGCWEtN_G7UJCz3DBDrJCcQm5pnBIEBZUZUgo2RHe9d-fbjz2ETm_bvY_nBZ1ymUk5TnkaqbSnrG9D8FDqnXe18QdNiT6WqvtSdSxVn0rVKoZYHwoRbjbgf9X_pL4Ad4B7-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574778252</pqid></control><display><type>article</type><title>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Jiayi ; Wu, Xuannan ; Hu, Qian ; Ming, Yong ; Hou, Yidong</creator><creatorcontrib>Li, Jiayi ; Wu, Xuannan ; Hu, Qian ; Ming, Yong ; Hou, Yidong</creatorcontrib><description>Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.</description><identifier>ISSN: 1557-1955</identifier><identifier>EISSN: 1557-1963</identifier><identifier>DOI: 10.1007/s11468-020-01339-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Beryllium ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Glass substrates ; Information systems ; Light diffraction ; Light transmission ; Nanotechnology ; Nanotechnology devices ; Subtraction ; Waveguides</subject><ispartof>Plasmonics (Norwell, Mass.), 2021-10, Vol.16 (5), p.1827-1834</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</citedby><cites>FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</cites><orcidid>0000-0002-9164-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11468-020-01339-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11468-020-01339-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Jiayi</creatorcontrib><creatorcontrib>Wu, Xuannan</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Ming, Yong</creatorcontrib><creatorcontrib>Hou, Yidong</creatorcontrib><title>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</title><title>Plasmonics (Norwell, Mass.)</title><addtitle>Plasmonics</addtitle><description>Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.</description><subject>Asymmetry</subject><subject>Beryllium</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Glass substrates</subject><subject>Information systems</subject><subject>Light diffraction</subject><subject>Light transmission</subject><subject>Nanotechnology</subject><subject>Nanotechnology devices</subject><subject>Subtraction</subject><subject>Waveguides</subject><issn>1557-1955</issn><issn>1557-1963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXA9dhkMkmaZT9VqLip65DJvKmp81GTqdB_b9oRdSU8yCOce-BdhG4puaeEyFGgNBPjhKQkIZQxlagzNKCcy4Qqwc5_ds4v0VUIW0KyLBPZAL1PXeE82M61janwotgAnoRDXUPnncUrt3nr8NqbJtQuhAhh1-Bn6Ew1mjuoYvCIzeHTWcBTE6DAkfljmLuy9Obkv0YXpakC3Hy_Q_S6XKxnj8nq5eFpNlklllHVJVYpU-bARG7GUjAhpGRGCWEtN_G7UJCz3DBDrJCcQm5pnBIEBZUZUgo2RHe9d-fbjz2ETm_bvY_nBZ1ymUk5TnkaqbSnrG9D8FDqnXe18QdNiT6WqvtSdSxVn0rVKoZYHwoRbjbgf9X_pL4Ad4B7-Q</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Li, Jiayi</creator><creator>Wu, Xuannan</creator><creator>Hu, Qian</creator><creator>Ming, Yong</creator><creator>Hou, Yidong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9164-683X</orcidid></search><sort><creationdate>20211001</creationdate><title>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</title><author>Li, Jiayi ; Wu, Xuannan ; Hu, Qian ; Ming, Yong ; Hou, Yidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c99afbe36ba876366773a966cc5abe3d9eb3ba3a0c6751ebc1bc1fe61e94a0f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymmetry</topic><topic>Beryllium</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Glass substrates</topic><topic>Information systems</topic><topic>Light diffraction</topic><topic>Light transmission</topic><topic>Nanotechnology</topic><topic>Nanotechnology devices</topic><topic>Subtraction</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiayi</creatorcontrib><creatorcontrib>Wu, Xuannan</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Ming, Yong</creatorcontrib><creatorcontrib>Hou, Yidong</creatorcontrib><collection>CrossRef</collection><jtitle>Plasmonics (Norwell, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiayi</au><au>Wu, Xuannan</au><au>Hu, Qian</au><au>Ming, Yong</au><au>Hou, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction</atitle><jtitle>Plasmonics (Norwell, Mass.)</jtitle><stitle>Plasmonics</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>1827</spage><epage>1834</epage><pages>1827-1834</pages><issn>1557-1955</issn><eissn>1557-1963</eissn><abstract>Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11468-020-01339-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9164-683X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1557-1955 |
ispartof | Plasmonics (Norwell, Mass.), 2021-10, Vol.16 (5), p.1827-1834 |
issn | 1557-1955 1557-1963 |
language | eng |
recordid | cdi_proquest_journals_2574778252 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymmetry Beryllium Biochemistry Biological and Medical Physics Biophysics Biotechnology Chemistry Chemistry and Materials Science Glass substrates Information systems Light diffraction Light transmission Nanotechnology Nanotechnology devices Subtraction Waveguides |
title | Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20Edge%20Asymmetric%20Light%20Transmission%20in%20Metal/Dielectric%20Device%20Based%20on%20Asymmetric%20Diffraction&rft.jtitle=Plasmonics%20(Norwell,%20Mass.)&rft.au=Li,%20Jiayi&rft.date=2021-10-01&rft.volume=16&rft.issue=5&rft.spage=1827&rft.epage=1834&rft.pages=1827-1834&rft.issn=1557-1955&rft.eissn=1557-1963&rft_id=info:doi/10.1007/s11468-020-01339-9&rft_dat=%3Cproquest_cross%3E2574778252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574778252&rft_id=info:pmid/&rfr_iscdi=true |