Bidirectional Edge Asymmetric Light Transmission in Metal/Dielectric Device Based on Asymmetric Diffraction

Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2021-10, Vol.16 (5), p.1827-1834
Hauptverfasser: Li, Jiayi, Wu, Xuannan, Hu, Qian, Ming, Yong, Hou, Yidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asymmetric light transmission (ALT) or optical diode-like nanodevices have attracted many research interests in recent years for its rosy potential application in all optical computing and information systems. In this work, we propose and numerically demonstrate a bidirectional edge asymmetric light transmission (BE-ALT) device, which is composed by the easy-processing metal/dielectric cylinders arranged periodically on glass substrate. The ALT effect in the proposed BE-ALT device shows a saltation at one critical wavelength, i.e., the asymmetric subtraction owns different signs for the wavelength larger and smaller than the critical wavelength. The asymmetric subtraction designed in this work changes dramatically from − 60% to + 80% at around 600 nm, which can be effectively manipulated by applying different structure parameters. The underlying physical mechanism has been investigated systematically, including the asymmetric diffraction effect, localized surface plasmonic resonance (LSPR), and the waveguide mode (WGM). Our designed BE-ALT device provides a new choice for the practical applications of ALT effect.
ISSN:1557-1955
1557-1963
DOI:10.1007/s11468-020-01339-9