Peculiarities of heat transfer at the liquid metal flow in a vertical channel in a coplanar magnetic field
The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ∼1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the L...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2017-11, Vol.891 (1), p.12073 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ∼1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the LM flow in the heat exchange channels for cooling the liquid metal module of the blanket of the thermonuclear reactor (TNR) of the TOKAMAK type. The experiments were carried out on the basis of the mercury magnetohydrodynamic test-bed (MHD) Moscow Power Engineering Institute (MPEI) - Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). The probe measurement technique was used in the flow. Profiles of averaged velocity and averaged temperature, as well as profiles of temperature pulsations in the axial planes of the channel cross-section, are obtained; the distribution of the dimensionless wall temperature along the perimeter unfolding of the channel in the section and along the length of the channel. A significant effect of thermogravitational convection (TGC), which leads to unexpected effects, is found. At the downflow in a magnetic field, in some modes, low-frequency pulsations of anomalously high intensity occur. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/891/1/012073 |