Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction

The role of climate can be affected by plants. The weather can accelerate and multiply the existence of various plant pests and diseases, accelerate the growth and development of grass among plants, and encourage the emergence of infection and significant damage to plants. The elements of climate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2018-12, Vol.195 (1), p.12064
Hauptverfasser: Caraka, Rezzy Eko, Supatmanto, Budi Darmawan, Tahmid, Muhammad, Soebagyo, Joko, Mauludin, M Ali, Iskandar, Akbar, Pardamean, Bens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12064
container_title IOP conference series. Earth and environmental science
container_volume 195
creator Caraka, Rezzy Eko
Supatmanto, Budi Darmawan
Tahmid, Muhammad
Soebagyo, Joko
Mauludin, M Ali
Iskandar, Akbar
Pardamean, Bens
description The role of climate can be affected by plants. The weather can accelerate and multiply the existence of various plant pests and diseases, accelerate the growth and development of grass among plants, and encourage the emergence of infection and significant damage to plants. The elements of climate that affect the growth of plants are one of them is rainfall. In this paper, we performed the simulation using the non-parametric penalized spline (PSPLINE) method and studied the effect on rice production in Lampung. It can be concluded that the increasing fluctuation, frequency, and intensity of climate anomalies in the last decade caused by the ENSO phenomenon have an impact on changes in distribution patterns, intensity, and period of the wet season so that the start of the rainy season and the dry season becomes too late. As a result, there is a seasonal shift from normal average conditions that can ultimately have severe implications for food crops. In a nutshell penalized spline gives high accuracy with R2 = 96.227% and MAPE = 1.62%.
doi_str_mv 10.1088/1755-1315/195/1/012064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2574413601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574413601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3854-91253c33c00cd3a0977d305c580dc641a8a782fc5f8c768783e0bed8465362883</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFOXNM1HL2XMKQwcTsG7ENPUZWxJTVrEf29qZSIIXuQkcJ7znvAAcI7RFUZCTDCnNMME0wku05kgnCNWHIDRvnG4fyN-DE5i3CDEeEHKEXh-UNbVaruFtQ9Gq9ha9wq72Nflarm1zkDlKhisNrAJvup0a72D77ZdQ6-Ncplqdz42axMMtK41QX0Rp-AoxUZz9n2PwdPN7HF6my3u53fT60WmiaBFVuKcEk2IRkhXRKGS84ogqqlAlWYFVkJxkdea1kJzJrggBr2YShSMEpYLQcbgYshNn3vrTGzlxnfBpZUyp7woMGEIJ4oNlA4-xmBq2QS7U-FDYiR7i7IXJHtZMlmUWA4W0-DlMGh985M8m61-YbKp6oTmf6D_5H8C9uqAUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574413601</pqid></control><display><type>article</type><title>Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>Caraka, Rezzy Eko ; Supatmanto, Budi Darmawan ; Tahmid, Muhammad ; Soebagyo, Joko ; Mauludin, M Ali ; Iskandar, Akbar ; Pardamean, Bens</creator><creatorcontrib>Caraka, Rezzy Eko ; Supatmanto, Budi Darmawan ; Tahmid, Muhammad ; Soebagyo, Joko ; Mauludin, M Ali ; Iskandar, Akbar ; Pardamean, Bens</creatorcontrib><description>The role of climate can be affected by plants. The weather can accelerate and multiply the existence of various plant pests and diseases, accelerate the growth and development of grass among plants, and encourage the emergence of infection and significant damage to plants. The elements of climate that affect the growth of plants are one of them is rainfall. In this paper, we performed the simulation using the non-parametric penalized spline (PSPLINE) method and studied the effect on rice production in Lampung. It can be concluded that the increasing fluctuation, frequency, and intensity of climate anomalies in the last decade caused by the ENSO phenomenon have an impact on changes in distribution patterns, intensity, and period of the wet season so that the start of the rainy season and the dry season becomes too late. As a result, there is a seasonal shift from normal average conditions that can ultimately have severe implications for food crops. In a nutshell penalized spline gives high accuracy with R2 = 96.227% and MAPE = 1.62%.</description><identifier>ISSN: 1755-1307</identifier><identifier>ISSN: 1755-1315</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/195/1/012064</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Anomalies ; Atmosphere ; Climate ; Crop production ; Dry season ; Economic forecasting ; El Nino ; Ocean ; Ocean-atmosphere interaction ; Penalized ; Pests ; Plant diseases ; Plant growth ; Rainfall ; Rainy season ; Rice ; Seasons ; Spline</subject><ispartof>IOP conference series. Earth and environmental science, 2018-12, Vol.195 (1), p.12064</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3854-91253c33c00cd3a0977d305c580dc641a8a782fc5f8c768783e0bed8465362883</citedby><cites>FETCH-LOGICAL-c3854-91253c33c00cd3a0977d305c580dc641a8a782fc5f8c768783e0bed8465362883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/195/1/012064/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Caraka, Rezzy Eko</creatorcontrib><creatorcontrib>Supatmanto, Budi Darmawan</creatorcontrib><creatorcontrib>Tahmid, Muhammad</creatorcontrib><creatorcontrib>Soebagyo, Joko</creatorcontrib><creatorcontrib>Mauludin, M Ali</creatorcontrib><creatorcontrib>Iskandar, Akbar</creatorcontrib><creatorcontrib>Pardamean, Bens</creatorcontrib><title>Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>The role of climate can be affected by plants. The weather can accelerate and multiply the existence of various plant pests and diseases, accelerate the growth and development of grass among plants, and encourage the emergence of infection and significant damage to plants. The elements of climate that affect the growth of plants are one of them is rainfall. In this paper, we performed the simulation using the non-parametric penalized spline (PSPLINE) method and studied the effect on rice production in Lampung. It can be concluded that the increasing fluctuation, frequency, and intensity of climate anomalies in the last decade caused by the ENSO phenomenon have an impact on changes in distribution patterns, intensity, and period of the wet season so that the start of the rainy season and the dry season becomes too late. As a result, there is a seasonal shift from normal average conditions that can ultimately have severe implications for food crops. In a nutshell penalized spline gives high accuracy with R2 = 96.227% and MAPE = 1.62%.</description><subject>Anomalies</subject><subject>Atmosphere</subject><subject>Climate</subject><subject>Crop production</subject><subject>Dry season</subject><subject>Economic forecasting</subject><subject>El Nino</subject><subject>Ocean</subject><subject>Ocean-atmosphere interaction</subject><subject>Penalized</subject><subject>Pests</subject><subject>Plant diseases</subject><subject>Plant growth</subject><subject>Rainfall</subject><subject>Rainy season</subject><subject>Rice</subject><subject>Seasons</subject><subject>Spline</subject><issn>1755-1307</issn><issn>1755-1315</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFOXNM1HL2XMKQwcTsG7ENPUZWxJTVrEf29qZSIIXuQkcJ7znvAAcI7RFUZCTDCnNMME0wku05kgnCNWHIDRvnG4fyN-DE5i3CDEeEHKEXh-UNbVaruFtQ9Gq9ha9wq72Nflarm1zkDlKhisNrAJvup0a72D77ZdQ6-Ncplqdz42axMMtK41QX0Rp-AoxUZz9n2PwdPN7HF6my3u53fT60WmiaBFVuKcEk2IRkhXRKGS84ogqqlAlWYFVkJxkdea1kJzJrggBr2YShSMEpYLQcbgYshNn3vrTGzlxnfBpZUyp7woMGEIJ4oNlA4-xmBq2QS7U-FDYiR7i7IXJHtZMlmUWA4W0-DlMGh985M8m61-YbKp6oTmf6D_5H8C9uqAUw</recordid><startdate>20181214</startdate><enddate>20181214</enddate><creator>Caraka, Rezzy Eko</creator><creator>Supatmanto, Budi Darmawan</creator><creator>Tahmid, Muhammad</creator><creator>Soebagyo, Joko</creator><creator>Mauludin, M Ali</creator><creator>Iskandar, Akbar</creator><creator>Pardamean, Bens</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20181214</creationdate><title>Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction</title><author>Caraka, Rezzy Eko ; Supatmanto, Budi Darmawan ; Tahmid, Muhammad ; Soebagyo, Joko ; Mauludin, M Ali ; Iskandar, Akbar ; Pardamean, Bens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3854-91253c33c00cd3a0977d305c580dc641a8a782fc5f8c768783e0bed8465362883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Atmosphere</topic><topic>Climate</topic><topic>Crop production</topic><topic>Dry season</topic><topic>Economic forecasting</topic><topic>El Nino</topic><topic>Ocean</topic><topic>Ocean-atmosphere interaction</topic><topic>Penalized</topic><topic>Pests</topic><topic>Plant diseases</topic><topic>Plant growth</topic><topic>Rainfall</topic><topic>Rainy season</topic><topic>Rice</topic><topic>Seasons</topic><topic>Spline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caraka, Rezzy Eko</creatorcontrib><creatorcontrib>Supatmanto, Budi Darmawan</creatorcontrib><creatorcontrib>Tahmid, Muhammad</creatorcontrib><creatorcontrib>Soebagyo, Joko</creatorcontrib><creatorcontrib>Mauludin, M Ali</creatorcontrib><creatorcontrib>Iskandar, Akbar</creatorcontrib><creatorcontrib>Pardamean, Bens</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caraka, Rezzy Eko</au><au>Supatmanto, Budi Darmawan</au><au>Tahmid, Muhammad</au><au>Soebagyo, Joko</au><au>Mauludin, M Ali</au><au>Iskandar, Akbar</au><au>Pardamean, Bens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2018-12-14</date><risdate>2018</risdate><volume>195</volume><issue>1</issue><spage>12064</spage><pages>12064-</pages><issn>1755-1307</issn><issn>1755-1315</issn><eissn>1755-1315</eissn><abstract>The role of climate can be affected by plants. The weather can accelerate and multiply the existence of various plant pests and diseases, accelerate the growth and development of grass among plants, and encourage the emergence of infection and significant damage to plants. The elements of climate that affect the growth of plants are one of them is rainfall. In this paper, we performed the simulation using the non-parametric penalized spline (PSPLINE) method and studied the effect on rice production in Lampung. It can be concluded that the increasing fluctuation, frequency, and intensity of climate anomalies in the last decade caused by the ENSO phenomenon have an impact on changes in distribution patterns, intensity, and period of the wet season so that the start of the rainy season and the dry season becomes too late. As a result, there is a seasonal shift from normal average conditions that can ultimately have severe implications for food crops. In a nutshell penalized spline gives high accuracy with R2 = 96.227% and MAPE = 1.62%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/195/1/012064</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2018-12, Vol.195 (1), p.12064
issn 1755-1307
1755-1315
1755-1315
language eng
recordid cdi_proquest_journals_2574413601
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra
subjects Anomalies
Atmosphere
Climate
Crop production
Dry season
Economic forecasting
El Nino
Ocean
Ocean-atmosphere interaction
Penalized
Pests
Plant diseases
Plant growth
Rainfall
Rainy season
Rice
Seasons
Spline
title Rainfall forecasting using PSPline and rice production with ocean-atmosphere interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A20%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainfall%20forecasting%20using%20PSPline%20and%20rice%20production%20with%20ocean-atmosphere%20interaction&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Caraka,%20Rezzy%20Eko&rft.date=2018-12-14&rft.volume=195&rft.issue=1&rft.spage=12064&rft.pages=12064-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/195/1/012064&rft_dat=%3Cproquest_cross%3E2574413601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574413601&rft_id=info:pmid/&rfr_iscdi=true