Wavelet Packet Transform-Assisted Least Squares Support Vector Machine for Gear Wear Degree Diagnosis

Wear degree detection of gears is an effective way to prevent faults. However, due to the interference of high-speed meshing vibration and environmental noise, the weak vibration signal generated by the gear is easily covered by the noise, which makes it difficult to detect the degree of wear. To ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-09, Vol.2021, p.1-9
Hauptverfasser: Wang, Hongmin, Chan, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wear degree detection of gears is an effective way to prevent faults. However, due to the interference of high-speed meshing vibration and environmental noise, the weak vibration signal generated by the gear is easily covered by the noise, which makes it difficult to detect the degree of wear. To address this issue, this paper proposes a novel gear wear degree diagnosis method based on local weighted scatter smoothing method (LOWESS), wavelet packet transform (WPT), and least square support vector machine (APSO-LSSVM) optimized by adaptive particle swarm algorithm. According to the low signal-to-noise ratio characteristic of gear vibration signal, LOWESS is first used to preprocess the signal spectrum. Then, the characteristic parameters used to characterize gear wear are extracted from different decomposition depths by WPT and, finally, combined with APSO-SVM to diagnose the degree of gear wear. Compared with the basic least squares support vector machine, the improved method has better performance in sample classification. The experimental results show that the method in this paper can effectively reduce the diagnosis error caused by background noise, and the diagnosis accuracy reaches 98.33%, which can provide a solution for the health status monitoring of gears.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/9889933