Methodology of optimisation for a nanostructured two-photon absorption photodetector
We introduce a 3-step method to optimise a nanostructured photodetector for infrared sensing through non degenerated two-photon absorption (NDTPA). First, the nanostructure is designed to tailor the distribution and concentration of both pump and signal intensities within the absorbing layer, thus l...
Gespeichert in:
Veröffentlicht in: | Journal of the European Optical Society. Rapid publications 2021-12, Vol.17 (1), Article 20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a 3-step method to optimise a nanostructured photodetector for infrared sensing through non degenerated two-photon absorption (NDTPA). First, the nanostructure is designed to tailor the distribution and concentration of both pump and signal intensities within the absorbing layer, thus leading to a gain in two-photon absorption. Second, the issue of the competition between NDTPA and other sub-bandgap transitions is tackled with a new figure of merit to favor as much as possible NDTPA while minimising other absorption processes. Third, a refined computation of the gain and the figure of merit is done to consider focused beams. Finally, two scenarios based on low power infrared photodetection are investigated to illustrate the flexibility and adaptibility of the method. It is shown that the gain is up to 7 times higher and the figure of merit is up to 20 times higher compared to the literature. |
---|---|
ISSN: | 1990-2573 1990-2573 |
DOI: | 10.1186/s41476-021-00167-6 |