Irradiation of Fe-Mn Supersaturated Solid Solution with Ions of Various Atomic Masses (Ar+, Xe+) and Analysis of the Role of Nanosized Dynamic Effects in the Activation Processes of Long-Range Type

A multiple increase in the atom mobility in metastable supersaturated (quenched from 850 °C) Fe-8.16 at % Mn solid solution is detected at temperatures less than 250°C under irradiation with 5-keV Ar+ and Xe+ ions of different masses. The irradiation-induced atom redistribution in the entire volume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2017-05, Vol.830 (1), p.12086
Hauptverfasser: Ovchinnikov, V V, Makhin'ko, F F, Semionkin, V A, Shalomov, K V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multiple increase in the atom mobility in metastable supersaturated (quenched from 850 °C) Fe-8.16 at % Mn solid solution is detected at temperatures less than 250°C under irradiation with 5-keV Ar+ and Xe+ ions of different masses. The irradiation-induced atom redistribution in the entire volume of foils 30 μm thick at a projected Ar+ and Xe+ ion ranges as much as 20-30 nm only is found and studied by the transmission Mössbauer spectroscopy. Long-range effects at low irradiation doses and anomalously low temperatures are attributed to "radiation shaking" of metastable media with post-cascade solitary waves in contrast to thermally stimulated radiation-enhanced processes in the narrow nanoscale near-surface layers of the alloy. It has been shown that heavier Xe+ ions at higher irradiation doses have a stronger impact on the solid solution than Ar+ ions.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/830/1/012086