Efficient computation of target-oriented link criticalness centrality in uncertain graphs

We challenge the problem of efficiently identifying critical links that substantially degrade network performance if they do not function under a realistic situation where each link is probabilistically disconnected, e.g., unexpected traffic accident in a road network and unexpected server down in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2021-01, Vol.25 (5), p.1323-1343
Hauptverfasser: Saito, Kazumi, Fushimi, Takayasu, Ohara, Kouzou, Kimura, Masahiro, Motoda, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We challenge the problem of efficiently identifying critical links that substantially degrade network performance if they do not function under a realistic situation where each link is probabilistically disconnected, e.g., unexpected traffic accident in a road network and unexpected server down in a communication network. To solve this problem, we utilize the bridge detection technique in graph theory and efficiently identify critical links in case the node reachability is taken as the performance measure.To be more precise, we define a set of target nodes and a new measure associated with it, Target-oriented latent link Criticalness Centrality (TCC), which is defined as the marginal loss of the expected number of nodes in the network that can reach, or equivalently can be reached from, one of the target nodes, and compute TCC for each link by use of detected bridges. We apply the proposed method to two real-world networks, one from social network and the other from spatial network, and empirically show that the proposed method has a good scalability with respect to the network size and the links our method identified possess unique properties. They are substantially more critical than those obtained by the others, and no known measures can replace the TCC measure.
ISSN:1088-467X
1571-4128
DOI:10.3233/IDA-205539