Unbounded \(M\)-weakly and unbounded \(L\)-weakly compact operators
We introduce the class of unbounded \(M\)-weakly operators and the class of unbounded \(L\)-weakly compact operators. We investigate some properties for these new classification of operators and we study relation between them and \(M\)-weakly compact and \(L\)-weakly compact operators. We also prese...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the class of unbounded \(M\)-weakly operators and the class of unbounded \(L\)-weakly compact operators. We investigate some properties for these new classification of operators and we study relation between them and \(M\)-weakly compact and \(L\)-weakly compact operators. We also present an operator characterization of Banach lattices with order continuous norm. \keywords{unbounded \(M\)-weakly compact \and unbounded \(L\)-weakly compact \and unbounded norm convergence \and \(M\)-weakly compact \and \(L\)-weakly compact |
---|---|
ISSN: | 2331-8422 |