On the equation \(x^2+dy^6=z^p\) for square-free \(1\le d\le 20\)

The purpose of the present article is to show how the modular method together with different techniques can be used to prove non-existence of primitive non-trivial solutions of the equation \(x^2+dy^6=z^p\) for square-free values \(1 \le d \le 20\) following the approach of [PT]. The main innovation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: Golfieri, Franco, Pacetti, Ariel, Lucas Villagra Torcomian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of the present article is to show how the modular method together with different techniques can be used to prove non-existence of primitive non-trivial solutions of the equation \(x^2+dy^6=z^p\) for square-free values \(1 \le d \le 20\) following the approach of [PT]. The main innovation is to make use of the symplectic argument over ramified extensions to discard solutions, together with a multi-Frey approach to deduce large image of Galois representations.
ISSN:2331-8422