Increased ranking change in wheat breeding under climate change
The International Maize and Wheat Improvement Center develops and annually distributes elite wheat lines to public and private breeders worldwide. Trials have been created in multiple sites over many years to assess the lines’ performance for use in breeding and release as varieties, and to provide...
Gespeichert in:
Veröffentlicht in: | Nature plants 2021-09, Vol.7 (9), p.1207-1212 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The International Maize and Wheat Improvement Center develops and annually distributes elite wheat lines to public and private breeders worldwide. Trials have been created in multiple sites over many years to assess the lines’ performance for use in breeding and release as varieties, and to provide iterative feedback on refining breeding strategies
1
. The collaborator test sites are experiencing climate change, with new implications for how wheat genotypes are bred and selected
2
. Using a standard quantitative genetic model to analyse four International Maize and Wheat Improvement Center global spring wheat trial datasets, we examine how genotype–environment interactions have changed over recent decades. Notably, crossover interactions—a critical indicator of changes in the ranking of cultivar performance in different environments—have increased over time. Climatic factors explained over 70% of the year-to-year variability in crossover interactions for yield. Yield responses of all lines in trial environments from 1980 to 2018 revealed that climate change has increased the ranking change in breeding targeted to favourable environments by ~15%, while it has maintained or reduced the ranking change in breeding targeted to heat and drought stress by up to 13%. Genetic improvement has generally increased crossover interactions, particularly for wheat targeted to high-yielding environments. However, the latest wheat germplasm developed under heat stress was better adapted and more stable, partly offsetting the increase in ranking changes under the warmer climate.
Analyses of four International Maize and Wheat Improvement Center global spring wheat trial datasets showed that genotype–environment interactions have changed over recent decades and crossover interactions have increased, largely owing to climatic factors, making breeders’ decision-making harder. |
---|---|
ISSN: | 2055-0278 2055-0278 |
DOI: | 10.1038/s41477-021-00988-w |