Stochastic ordering for birth–death processes with killing

We consider a birth–death process with killing where transitions from state i may go to either state $i-1$ or state $i+1$ or an absorbing state (killing). Stochastic ordering results on the killing time are derived. In particular, if the killing rate in state i is monotone in i, then the distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2021-09, Vol.58 (3), p.708-720
Hauptverfasser: Hsiau, Shoou-Ren, Chen, May-Ru, Yao, Yi-Ching
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a birth–death process with killing where transitions from state i may go to either state $i-1$ or state $i+1$ or an absorbing state (killing). Stochastic ordering results on the killing time are derived. In particular, if the killing rate in state i is monotone in i, then the distribution of the killing time with initial state i is stochastically monotone in i. This result is a consequence of the following one for a non-negative tri-diagonal matrix M: if the row sums of M are monotone, so are the row sums of $M^n$ for all $n\ge 2$ .
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2021.1