Stochastic ordering for birth–death processes with killing
We consider a birth–death process with killing where transitions from state i may go to either state $i-1$ or state $i+1$ or an absorbing state (killing). Stochastic ordering results on the killing time are derived. In particular, if the killing rate in state i is monotone in i, then the distributio...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2021-09, Vol.58 (3), p.708-720 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a birth–death process with killing where transitions from state i may go to either state
$i-1$
or state
$i+1$
or an absorbing state (killing). Stochastic ordering results on the killing time are derived. In particular, if the killing rate in state i is monotone in i, then the distribution of the killing time with initial state i is stochastically monotone in i. This result is a consequence of the following one for a non-negative tri-diagonal matrix M: if the row sums of M are monotone, so are the row sums of
$M^n$
for all
$n\ge 2$
. |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2021.1 |