Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA
Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-07, Vol.1060 (1), p.12054 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12054 |
container_title | Journal of physics. Conference series |
container_volume | 1060 |
creator | Xi-cheng, Chen Fan, Bing-bing Yang, Wen-jia Tian, Gui-long Wu, Kai |
description | Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification |
doi_str_mv | 10.1088/1742-6596/1060/1/012054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572735669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572735669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1uTdrHOrxMpxM28DGkSaqZs61JJ-zfm1KZCIJ5SE5yvnNO-AA4RfACwSxLEKc4ZmnOEgQZTFACEYYp3QOjXWZ_F2fZITjyfgUhCYuPwH1hXVx0nVRv0bORbVNHU23qzlZWyc6G60OjzTpqqpC2L6-d0dGj_LQmupRb48Puw0vAFvPiGBxUcu3Nyfc5Bsvrq-XkNp7Nb6aTYhYrgjMaK56WtNSlwjzlOjeEYaJyBQ2lUjIsUYohKTFWJNOmIgRzqUuqlGaM5lVFxuBsaNu65mNjfCdWzcbVYaLAKcecpIzlgeIDpVzjvTOVaJ19l24rEBS9ONErEb0e0YsTSAziQuX5UGmb9qf13dNk8RsUre4_Q_6A_xvxBX6Be5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572735669</pqid></control><display><type>article</type><title>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xi-cheng, Chen ; Fan, Bing-bing ; Yang, Wen-jia ; Tian, Gui-long ; Wu, Kai</creator><creatorcontrib>Xi-cheng, Chen ; Fan, Bing-bing ; Yang, Wen-jia ; Tian, Gui-long ; Wu, Kai</creatorcontrib><description>Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1060/1/012054</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air defense ; Algorithms ; Optimization ; Optimization algorithms ; Physics ; Redundancy ; Set theory ; Weapons</subject><ispartof>Journal of physics. Conference series, 2018-07, Vol.1060 (1), p.12054</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</citedby><cites>FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1060/1/012054/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Xi-cheng, Chen</creatorcontrib><creatorcontrib>Fan, Bing-bing</creatorcontrib><creatorcontrib>Yang, Wen-jia</creatorcontrib><creatorcontrib>Tian, Gui-long</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><title>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification</description><subject>Air defense</subject><subject>Algorithms</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Physics</subject><subject>Redundancy</subject><subject>Set theory</subject><subject>Weapons</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1uTdrHOrxMpxM28DGkSaqZs61JJ-zfm1KZCIJ5SE5yvnNO-AA4RfACwSxLEKc4ZmnOEgQZTFACEYYp3QOjXWZ_F2fZITjyfgUhCYuPwH1hXVx0nVRv0bORbVNHU23qzlZWyc6G60OjzTpqqpC2L6-d0dGj_LQmupRb48Puw0vAFvPiGBxUcu3Nyfc5Bsvrq-XkNp7Nb6aTYhYrgjMaK56WtNSlwjzlOjeEYaJyBQ2lUjIsUYohKTFWJNOmIgRzqUuqlGaM5lVFxuBsaNu65mNjfCdWzcbVYaLAKcecpIzlgeIDpVzjvTOVaJ19l24rEBS9ONErEb0e0YsTSAziQuX5UGmb9qf13dNk8RsUre4_Q_6A_xvxBX6Be5o</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Xi-cheng, Chen</creator><creator>Fan, Bing-bing</creator><creator>Yang, Wen-jia</creator><creator>Tian, Gui-long</creator><creator>Wu, Kai</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180701</creationdate><title>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</title><author>Xi-cheng, Chen ; Fan, Bing-bing ; Yang, Wen-jia ; Tian, Gui-long ; Wu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air defense</topic><topic>Algorithms</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Physics</topic><topic>Redundancy</topic><topic>Set theory</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi-cheng, Chen</creatorcontrib><creatorcontrib>Fan, Bing-bing</creatorcontrib><creatorcontrib>Yang, Wen-jia</creatorcontrib><creatorcontrib>Tian, Gui-long</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi-cheng, Chen</au><au>Fan, Bing-bing</au><au>Yang, Wen-jia</au><au>Tian, Gui-long</au><au>Wu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>1060</volume><issue>1</issue><spage>12054</spage><pages>12054-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1060/1/012054</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-07, Vol.1060 (1), p.12054 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572735669 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Air defense Algorithms Optimization Optimization algorithms Physics Redundancy Set theory Weapons |
title | Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-Attack%20Weapon%20Identification%20Model%20of%20Weighted%20Navie%20Bayes%20Based%20on%20SOA&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Xi-cheng,%20Chen&rft.date=2018-07-01&rft.volume=1060&rft.issue=1&rft.spage=12054&rft.pages=12054-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1060/1/012054&rft_dat=%3Cproquest_cross%3E2572735669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572735669&rft_id=info:pmid/&rfr_iscdi=true |