Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA

Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-07, Vol.1060 (1), p.12054
Hauptverfasser: Xi-cheng, Chen, Fan, Bing-bing, Yang, Wen-jia, Tian, Gui-long, Wu, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12054
container_title Journal of physics. Conference series
container_volume 1060
creator Xi-cheng, Chen
Fan, Bing-bing
Yang, Wen-jia
Tian, Gui-long
Wu, Kai
description Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification
doi_str_mv 10.1088/1742-6596/1060/1/012054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2572735669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572735669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1uTdrHOrxMpxM28DGkSaqZs61JJ-zfm1KZCIJ5SE5yvnNO-AA4RfACwSxLEKc4ZmnOEgQZTFACEYYp3QOjXWZ_F2fZITjyfgUhCYuPwH1hXVx0nVRv0bORbVNHU23qzlZWyc6G60OjzTpqqpC2L6-d0dGj_LQmupRb48Puw0vAFvPiGBxUcu3Nyfc5Bsvrq-XkNp7Nb6aTYhYrgjMaK56WtNSlwjzlOjeEYaJyBQ2lUjIsUYohKTFWJNOmIgRzqUuqlGaM5lVFxuBsaNu65mNjfCdWzcbVYaLAKcecpIzlgeIDpVzjvTOVaJ19l24rEBS9ONErEb0e0YsTSAziQuX5UGmb9qf13dNk8RsUre4_Q_6A_xvxBX6Be5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572735669</pqid></control><display><type>article</type><title>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xi-cheng, Chen ; Fan, Bing-bing ; Yang, Wen-jia ; Tian, Gui-long ; Wu, Kai</creator><creatorcontrib>Xi-cheng, Chen ; Fan, Bing-bing ; Yang, Wen-jia ; Tian, Gui-long ; Wu, Kai</creatorcontrib><description>Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1060/1/012054</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air defense ; Algorithms ; Optimization ; Optimization algorithms ; Physics ; Redundancy ; Set theory ; Weapons</subject><ispartof>Journal of physics. Conference series, 2018-07, Vol.1060 (1), p.12054</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</citedby><cites>FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1060/1/012054/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Xi-cheng, Chen</creatorcontrib><creatorcontrib>Fan, Bing-bing</creatorcontrib><creatorcontrib>Yang, Wen-jia</creatorcontrib><creatorcontrib>Tian, Gui-long</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><title>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification</description><subject>Air defense</subject><subject>Algorithms</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Physics</subject><subject>Redundancy</subject><subject>Set theory</subject><subject>Weapons</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAUgIMoOKe_wYJvQm1uTdrHOrxMpxM28DGkSaqZs61JJ-zfm1KZCIJ5SE5yvnNO-AA4RfACwSxLEKc4ZmnOEgQZTFACEYYp3QOjXWZ_F2fZITjyfgUhCYuPwH1hXVx0nVRv0bORbVNHU23qzlZWyc6G60OjzTpqqpC2L6-d0dGj_LQmupRb48Puw0vAFvPiGBxUcu3Nyfc5Bsvrq-XkNp7Nb6aTYhYrgjMaK56WtNSlwjzlOjeEYaJyBQ2lUjIsUYohKTFWJNOmIgRzqUuqlGaM5lVFxuBsaNu65mNjfCdWzcbVYaLAKcecpIzlgeIDpVzjvTOVaJ19l24rEBS9ONErEb0e0YsTSAziQuX5UGmb9qf13dNk8RsUre4_Q_6A_xvxBX6Be5o</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Xi-cheng, Chen</creator><creator>Fan, Bing-bing</creator><creator>Yang, Wen-jia</creator><creator>Tian, Gui-long</creator><creator>Wu, Kai</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180701</creationdate><title>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</title><author>Xi-cheng, Chen ; Fan, Bing-bing ; Yang, Wen-jia ; Tian, Gui-long ; Wu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-c75b4bdbc2757d9e3623c9c0e44aa62a15203b22c38def3327adb4ccd6649ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air defense</topic><topic>Algorithms</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Physics</topic><topic>Redundancy</topic><topic>Set theory</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi-cheng, Chen</creatorcontrib><creatorcontrib>Fan, Bing-bing</creatorcontrib><creatorcontrib>Yang, Wen-jia</creatorcontrib><creatorcontrib>Tian, Gui-long</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi-cheng, Chen</au><au>Fan, Bing-bing</au><au>Yang, Wen-jia</au><au>Tian, Gui-long</au><au>Wu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-07-01</date><risdate>2018</risdate><volume>1060</volume><issue>1</issue><spage>12054</spage><pages>12054-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1060/1/012054</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-07, Vol.1060 (1), p.12054
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2572735669
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air defense
Algorithms
Optimization
Optimization algorithms
Physics
Redundancy
Set theory
Weapons
title Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air-Attack%20Weapon%20Identification%20Model%20of%20Weighted%20Navie%20Bayes%20Based%20on%20SOA&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Xi-cheng,%20Chen&rft.date=2018-07-01&rft.volume=1060&rft.issue=1&rft.spage=12054&rft.pages=12054-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1060/1/012054&rft_dat=%3Cproquest_cross%3E2572735669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572735669&rft_id=info:pmid/&rfr_iscdi=true