Air-Attack Weapon Identification Model of Weighted Navie Bayes Based on SOA

Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-07, Vol.1060 (1), p.12054
Hauptverfasser: Xi-cheng, Chen, Fan, Bing-bing, Yang, Wen-jia, Tian, Gui-long, Wu, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional Navie Bayes algorithm exists the issues of low inefficiency for the Air-attack Weapon Identification. Inorder to solve this problem, Air-attack Weapon Identification model of Weighted Navie Bayes Based on Seeker Optimization Algorithm is proposed. Firstly, the model reduces the dimension of the data sam-ples using rough set theory. Secondly, Seeker Optimization Algorithm searches the best attribute weights of Weighted Naïve Bayes. Finally, Navie Bayes classifier is structured with the best attribute weights to complete detection. The combination of the two algorithms can not only solve the feature redundancy problem of the traditional Navie Bayes algorithm, but also can optimize the strong independence between features. Through the experiments, prove that using this model for Air-attack Weapon Identification in air defense combat identification
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1060/1/012054