Study of cytotoxic activity of Ti–13Nb–13Zr medical alloy with different surface finishing techniques

The characterization of materials surface is essential, as the initial in vivo response is highly dependent on surface properties. Surface topography is a key aspect that influences the response of cells to products resulting from interaction with the surface of a titanium alloy, including parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-11, Vol.56 (31), p.17747-17767
Hauptverfasser: Hoppe, Viktoria, Szymczyk-Ziółkowska, Patrycja, Rusińska, Małgorzata, Poradowski, Dominik, Janeczek, Maciej, Ziółkowski, Grzegorz, Dybała, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The characterization of materials surface is essential, as the initial in vivo response is highly dependent on surface properties. Surface topography is a key aspect that influences the response of cells to products resulting from interaction with the surface of a titanium alloy, including parameters such as adhesion, spread, migration, proliferation, and differentiation of cells. Various surface modifications are used to improve the interface properties between MC3T3 and NHDF cells and the Ti–13Nb–13Zr-based surface. Among the techniques discussed in this paper, scanning electron microscopy, laser confocal scanning microscopy, and computed tomography are adequate to investigate materials topography at different scale levels. Chemical characterization of the outer layers of Ti–13Nb–13Zr samples was performed with X-ray photoelectron spectrometry. Studies have shown that the surfaces resulting from the treatment enabling the formation of titanium oxide and zirconium oxide show the lowest cytotoxicity. Implants made from the new generation of titanium alloy, not containing toxic elements, with the use of surface modification could be an essential innovation in implantology.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-021-06430-y