Quantum Computing-From NISQ to PISQ

Given the impeding timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2021-09, Vol.41 (5), p.24-32
Hauptverfasser: Bertels, Koen, Sarkar, Aritra, Ashraf, Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given the impeding timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing in various scientific fields. However, to this purpose, we need to use a complementary but quite different approach than proposed by the NISQ vision, which is heavily focused on and burdened by the engineering challenges. That is why we propose and advocate the PISQ approach: Perfect Intermediate Scale Quantum computing based on the already known concept of perfect qubits. This will allow researchers to focus much more on the development of new applications by defining the algorithms in terms of perfect qubits and evaluate them on quantum computing simulators that are executed on supercomputers. It is not the long-term solution but will currently allow universities to research on quantum logic and algorithms and companies can already start developing their internal know-how on quantum solutions.
ISSN:0272-1732
1937-4143
DOI:10.1109/MM.2021.3099195