Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices

An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.123575-123587
Hauptverfasser: Baziar, Aliasghar, Bo, Rui, Ghotbabadi, Misagh Dehghani, Veisi, Mehdi, Ur Rehman, Waqas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123587
container_issue
container_start_page 123575
container_title IEEE access
container_volume 9
creator Baziar, Aliasghar
Bo, Rui
Ghotbabadi, Misagh Dehghani
Veisi, Mehdi
Ur Rehman, Waqas
description An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGUs) subject to AC optimal power flow (AC-OPF) equations, operation constraints of RESs, shunt FACTS devices, and CGUs. To cope with the uncertainties of load and RES generation, robust and stochastic optimization and linearized formulation have been used to achieve a sub-optimal solution. To arrive at a more optimal solution, an evolutionary algorithm-based adaptive robust optimization (EA-ARO) approach to solve the non-linear and non-convex optimization problem was proposed. A hybrid solver of grey wolf optimization (GWO) and teaching learning-based optimization (TLBO) was proposed to solve the AC-SCUC problem in the worst-case scenario to obtain robust and reliable optimal solution. Finally, the proposed method was simulated on standard IEEE test systems to demonstrate its capabilities, and the results showed the proposed hybrid solver obtained robust optimal solutions with reduced computation time and standard deviation. Moreover, the numerical results proved the proposed strategy's capabilities of improving the economics of generation units, such as lower operational cost, and enhancing the performance of the transmission networks, such as improved voltage profile and reduced energy losses.
doi_str_mv 10.1109/ACCESS.2021.3108763
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2572666958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9525099</ieee_id><doaj_id>oai_doaj_org_article_c9f446de0102433683efc9966a797ca6</doaj_id><sourcerecordid>2572666958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b40847e764d0ad6fcfcda3b4e203835028f0dce8c5fad8cb1ccd24a06cac3c913</originalsourceid><addsrcrecordid>eNpNUc1u3CAYtKpWapTmCXJB6tlbfmxsjq67aSNFihQnZ4Th84aVDVuMt9o8Tp-0bBxF5QAfw8wA32TZNcEbQrD41rTttus2FFOyYQTXFWcfsgtKuMhZyfjH_-rP2dU873EadYLK6iL7uz36cYnWOxVOqBl3Ptj4POXf1QwGNUYdoj0CevD9Mkd0n3aTfVFnPhp8QE2LOtBL0pxQ690cg7IuCZ-cjQmYJhsncPH1zBoI1u3QAzj4o_oR0NZB2J1Q55egYUbKGdQ9L4l-07SPHfoBR5vwL9mnQY0zXL2tl9nTzfax_ZXf3f-8bZu7XBe4jnmf5qKCihcGK8MHPWijWF8AxaxmJab1gI2GWpeDMrXuidaGFgpzrTTTgrDL7Hb1NV7t5SHYKbVEemXlK-DDTqoQrR5BajEUBTeACaYFY7xmMGghOFeVqLTiyevr6nUI_vcCc5T79EmXni9pWVHOU_frxGIrSwc_zwGG91sJluds5ZqtPGcr37JNqutVZQHgXSFKWmIh2D8xBaMn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572666958</pqid></control><display><type>article</type><title>Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baziar, Aliasghar ; Bo, Rui ; Ghotbabadi, Misagh Dehghani ; Veisi, Mehdi ; Ur Rehman, Waqas</creator><creatorcontrib>Baziar, Aliasghar ; Bo, Rui ; Ghotbabadi, Misagh Dehghani ; Veisi, Mehdi ; Ur Rehman, Waqas</creatorcontrib><description>An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGUs) subject to AC optimal power flow (AC-OPF) equations, operation constraints of RESs, shunt FACTS devices, and CGUs. To cope with the uncertainties of load and RES generation, robust and stochastic optimization and linearized formulation have been used to achieve a sub-optimal solution. To arrive at a more optimal solution, an evolutionary algorithm-based adaptive robust optimization (EA-ARO) approach to solve the non-linear and non-convex optimization problem was proposed. A hybrid solver of grey wolf optimization (GWO) and teaching learning-based optimization (TLBO) was proposed to solve the AC-SCUC problem in the worst-case scenario to obtain robust and reliable optimal solution. Finally, the proposed method was simulated on standard IEEE test systems to demonstrate its capabilities, and the results showed the proposed hybrid solver obtained robust optimal solutions with reduced computation time and standard deviation. Moreover, the numerical results proved the proposed strategy's capabilities of improving the economics of generation units, such as lower operational cost, and enhancing the performance of the transmission networks, such as improved voltage profile and reduced energy losses.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3108763</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>AC security constrained unit commitment ; Adaptive algorithms ; adaptive robust optimization ; Alternative energy sources ; Computational geometry ; Computational modeling ; Constraints ; Convexity ; Energy resources ; evolutionary algorithm ; Evolutionary algorithms ; Flexible AC power transmission systems ; Genetic algorithms ; Load modeling ; Operating costs ; Optimization ; Power flow ; Reactive power ; Renewable energy sources ; Renewable resources ; Robustness (mathematics) ; Security ; shunt FACTS devices ; Solvers ; Stochastic processes ; Uncertainty ; Unit commitment</subject><ispartof>IEEE access, 2021, Vol.9, p.123575-123587</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b40847e764d0ad6fcfcda3b4e203835028f0dce8c5fad8cb1ccd24a06cac3c913</citedby><cites>FETCH-LOGICAL-c408t-b40847e764d0ad6fcfcda3b4e203835028f0dce8c5fad8cb1ccd24a06cac3c913</cites><orcidid>0000-0001-9015-473X ; 0000-0001-7375-8267 ; 0000-0001-9690-3375 ; 0000-0001-9108-1093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9525099$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Baziar, Aliasghar</creatorcontrib><creatorcontrib>Bo, Rui</creatorcontrib><creatorcontrib>Ghotbabadi, Misagh Dehghani</creatorcontrib><creatorcontrib>Veisi, Mehdi</creatorcontrib><creatorcontrib>Ur Rehman, Waqas</creatorcontrib><title>Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices</title><title>IEEE access</title><addtitle>Access</addtitle><description>An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGUs) subject to AC optimal power flow (AC-OPF) equations, operation constraints of RESs, shunt FACTS devices, and CGUs. To cope with the uncertainties of load and RES generation, robust and stochastic optimization and linearized formulation have been used to achieve a sub-optimal solution. To arrive at a more optimal solution, an evolutionary algorithm-based adaptive robust optimization (EA-ARO) approach to solve the non-linear and non-convex optimization problem was proposed. A hybrid solver of grey wolf optimization (GWO) and teaching learning-based optimization (TLBO) was proposed to solve the AC-SCUC problem in the worst-case scenario to obtain robust and reliable optimal solution. Finally, the proposed method was simulated on standard IEEE test systems to demonstrate its capabilities, and the results showed the proposed hybrid solver obtained robust optimal solutions with reduced computation time and standard deviation. Moreover, the numerical results proved the proposed strategy's capabilities of improving the economics of generation units, such as lower operational cost, and enhancing the performance of the transmission networks, such as improved voltage profile and reduced energy losses.</description><subject>AC security constrained unit commitment</subject><subject>Adaptive algorithms</subject><subject>adaptive robust optimization</subject><subject>Alternative energy sources</subject><subject>Computational geometry</subject><subject>Computational modeling</subject><subject>Constraints</subject><subject>Convexity</subject><subject>Energy resources</subject><subject>evolutionary algorithm</subject><subject>Evolutionary algorithms</subject><subject>Flexible AC power transmission systems</subject><subject>Genetic algorithms</subject><subject>Load modeling</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Reactive power</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Robustness (mathematics)</subject><subject>Security</subject><subject>shunt FACTS devices</subject><subject>Solvers</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><subject>Unit commitment</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUc1u3CAYtKpWapTmCXJB6tlbfmxsjq67aSNFihQnZ4Th84aVDVuMt9o8Tp-0bBxF5QAfw8wA32TZNcEbQrD41rTttus2FFOyYQTXFWcfsgtKuMhZyfjH_-rP2dU873EadYLK6iL7uz36cYnWOxVOqBl3Ptj4POXf1QwGNUYdoj0CevD9Mkd0n3aTfVFnPhp8QE2LOtBL0pxQ690cg7IuCZ-cjQmYJhsncPH1zBoI1u3QAzj4o_oR0NZB2J1Q55egYUbKGdQ9L4l-07SPHfoBR5vwL9mnQY0zXL2tl9nTzfax_ZXf3f-8bZu7XBe4jnmf5qKCihcGK8MHPWijWF8AxaxmJab1gI2GWpeDMrXuidaGFgpzrTTTgrDL7Hb1NV7t5SHYKbVEemXlK-DDTqoQrR5BajEUBTeACaYFY7xmMGghOFeVqLTiyevr6nUI_vcCc5T79EmXni9pWVHOU_frxGIrSwc_zwGG91sJluds5ZqtPGcr37JNqutVZQHgXSFKWmIh2D8xBaMn</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Baziar, Aliasghar</creator><creator>Bo, Rui</creator><creator>Ghotbabadi, Misagh Dehghani</creator><creator>Veisi, Mehdi</creator><creator>Ur Rehman, Waqas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9015-473X</orcidid><orcidid>https://orcid.org/0000-0001-7375-8267</orcidid><orcidid>https://orcid.org/0000-0001-9690-3375</orcidid><orcidid>https://orcid.org/0000-0001-9108-1093</orcidid></search><sort><creationdate>2021</creationdate><title>Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices</title><author>Baziar, Aliasghar ; Bo, Rui ; Ghotbabadi, Misagh Dehghani ; Veisi, Mehdi ; Ur Rehman, Waqas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b40847e764d0ad6fcfcda3b4e203835028f0dce8c5fad8cb1ccd24a06cac3c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AC security constrained unit commitment</topic><topic>Adaptive algorithms</topic><topic>adaptive robust optimization</topic><topic>Alternative energy sources</topic><topic>Computational geometry</topic><topic>Computational modeling</topic><topic>Constraints</topic><topic>Convexity</topic><topic>Energy resources</topic><topic>evolutionary algorithm</topic><topic>Evolutionary algorithms</topic><topic>Flexible AC power transmission systems</topic><topic>Genetic algorithms</topic><topic>Load modeling</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Reactive power</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Robustness (mathematics)</topic><topic>Security</topic><topic>shunt FACTS devices</topic><topic>Solvers</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><topic>Unit commitment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baziar, Aliasghar</creatorcontrib><creatorcontrib>Bo, Rui</creatorcontrib><creatorcontrib>Ghotbabadi, Misagh Dehghani</creatorcontrib><creatorcontrib>Veisi, Mehdi</creatorcontrib><creatorcontrib>Ur Rehman, Waqas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baziar, Aliasghar</au><au>Bo, Rui</au><au>Ghotbabadi, Misagh Dehghani</au><au>Veisi, Mehdi</au><au>Ur Rehman, Waqas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>123575</spage><epage>123587</epage><pages>123575-123587</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGUs) subject to AC optimal power flow (AC-OPF) equations, operation constraints of RESs, shunt FACTS devices, and CGUs. To cope with the uncertainties of load and RES generation, robust and stochastic optimization and linearized formulation have been used to achieve a sub-optimal solution. To arrive at a more optimal solution, an evolutionary algorithm-based adaptive robust optimization (EA-ARO) approach to solve the non-linear and non-convex optimization problem was proposed. A hybrid solver of grey wolf optimization (GWO) and teaching learning-based optimization (TLBO) was proposed to solve the AC-SCUC problem in the worst-case scenario to obtain robust and reliable optimal solution. Finally, the proposed method was simulated on standard IEEE test systems to demonstrate its capabilities, and the results showed the proposed hybrid solver obtained robust optimal solutions with reduced computation time and standard deviation. Moreover, the numerical results proved the proposed strategy's capabilities of improving the economics of generation units, such as lower operational cost, and enhancing the performance of the transmission networks, such as improved voltage profile and reduced energy losses.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3108763</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9015-473X</orcidid><orcidid>https://orcid.org/0000-0001-7375-8267</orcidid><orcidid>https://orcid.org/0000-0001-9690-3375</orcidid><orcidid>https://orcid.org/0000-0001-9108-1093</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.123575-123587
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2572666958
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects AC security constrained unit commitment
Adaptive algorithms
adaptive robust optimization
Alternative energy sources
Computational geometry
Computational modeling
Constraints
Convexity
Energy resources
evolutionary algorithm
Evolutionary algorithms
Flexible AC power transmission systems
Genetic algorithms
Load modeling
Operating costs
Optimization
Power flow
Reactive power
Renewable energy sources
Renewable resources
Robustness (mathematics)
Security
shunt FACTS devices
Solvers
Stochastic processes
Uncertainty
Unit commitment
title Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Algorithm-Based%20Adaptive%20Robust%20Optimization%20for%20AC%20Security%20Constrained%20Unit%20Commitment%20Considering%20Renewable%20Energy%20Sources%20and%20Shunt%20FACTS%20Devices&rft.jtitle=IEEE%20access&rft.au=Baziar,%20Aliasghar&rft.date=2021&rft.volume=9&rft.spage=123575&rft.epage=123587&rft.pages=123575-123587&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3108763&rft_dat=%3Cproquest_ieee_%3E2572666958%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572666958&rft_id=info:pmid/&rft_ieee_id=9525099&rft_doaj_id=oai_doaj_org_article_c9f446de0102433683efc9966a797ca6&rfr_iscdi=true