Evolutionary Algorithm-Based Adaptive Robust Optimization for AC Security Constrained Unit Commitment Considering Renewable Energy Sources and Shunt FACTS Devices

An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.123575-123587
Hauptverfasser: Baziar, Aliasghar, Bo, Rui, Ghotbabadi, Misagh Dehghani, Veisi, Mehdi, Ur Rehman, Waqas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An AC security constrained unit commitment (AC-SCUC) in the presence of the renewable energy sources (RESs) and shunt flexible AC transmission system (FACTS) devices is conventionally modeled as a deterministic optimization problem to minimize the operation cost of conventional generation units (CGUs) subject to AC optimal power flow (AC-OPF) equations, operation constraints of RESs, shunt FACTS devices, and CGUs. To cope with the uncertainties of load and RES generation, robust and stochastic optimization and linearized formulation have been used to achieve a sub-optimal solution. To arrive at a more optimal solution, an evolutionary algorithm-based adaptive robust optimization (EA-ARO) approach to solve the non-linear and non-convex optimization problem was proposed. A hybrid solver of grey wolf optimization (GWO) and teaching learning-based optimization (TLBO) was proposed to solve the AC-SCUC problem in the worst-case scenario to obtain robust and reliable optimal solution. Finally, the proposed method was simulated on standard IEEE test systems to demonstrate its capabilities, and the results showed the proposed hybrid solver obtained robust optimal solutions with reduced computation time and standard deviation. Moreover, the numerical results proved the proposed strategy's capabilities of improving the economics of generation units, such as lower operational cost, and enhancing the performance of the transmission networks, such as improved voltage profile and reduced energy losses.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3108763