Low-cost racking for solar photovoltaic systems with renewable tensegrity structures

•Renewable tensegrity structures are viable for lightweight, low-cost PV racking.•A novel algorithm integrates tensegrity into standard PV system design workflow.•Locally sourced timbers, such as bamboo, can be used as tensegrity members.•Tensegrity support structures can reduce solar PV racking cos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2021-08, Vol.224, p.798-807
Hauptverfasser: Arefeen, Shamsul, Dallas, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Renewable tensegrity structures are viable for lightweight, low-cost PV racking.•A novel algorithm integrates tensegrity into standard PV system design workflow.•Locally sourced timbers, such as bamboo, can be used as tensegrity members.•Tensegrity support structures can reduce solar PV racking costs by as much as 77%.•Enables versatile applications of PV, such as agrivoltaics and water canal covering. Rapid decline in the cost of solar photovoltaic (PV) modules and associated electronics has elevated the significance of structural balance of systems (BOS) in the system cost composition. In this study tensegrity, a bio-inspired structure made of bars as compression members and strings as tensile members, is evaluated as an economical racking solution for solar photovoltaic arrays. For the first time, the electrical aspects of solar photovoltaic system design have been unified with the structural aspects of tensegrity through a novel algorithm. The end-to-end system design framework is validated through modelling of a practical system with System Advisor Model (SAM), a standard design tool by National Renewable Energy Lab (NREL), in congruence with the minimal mass planar bridge tensegrity model implemented in MATLAB. This algorithmic demonstration establishes tensegrity as a technically viable system design approach and assesses the significant reduction in racking material weight leading to maximum cost savings up to 77%. The technical compatibility, ease of installation, logistic efficiency and economic benefits of tensegrity-enabled racking would accelerate wide-scale adoption of solar energy across the world. It is also conducive to high-impact applications of solar energy such as water canal covering and shaded agriculture. Additionally, tensegrity configuration provisions the use of locally grown timbers like bamboo as the compression member which benefits developing regions through local sourcing, fast installation, carbon capture and farming incentive. Tensegrity also unlocks the research avenue for adding modularity and portability to solar PV systems leveraging its controllable dynamic properties.
ISSN:0038-092X
1471-1257
DOI:10.1016/j.solener.2021.06.020