Essential Self-adjointness of Symmetric First-Order Differential Systems and Confinement of Dirac Particles on Bounded Domains in Rd

We prove essential self-adjointness of Dirac operators with Lorentz scalar potentials which grow sufficiently fast near the boundary ∂ Ω of the spatial domain Ω ⊂ R d . On the way, we first consider general symmetric first order differential systems, for which we identify a new, large class of poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021, Vol.387 (1), p.361-395
Hauptverfasser: Nenciu, Gheorghe, Nenciu, Irina, Obermeyer, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove essential self-adjointness of Dirac operators with Lorentz scalar potentials which grow sufficiently fast near the boundary ∂ Ω of the spatial domain Ω ⊂ R d . On the way, we first consider general symmetric first order differential systems, for which we identify a new, large class of potentials, called scalar potentials, ensuring essential self-adjointness. Furthermore, using the supersymmetric structure of the Dirac operator in the two dimensional case, we prove confinement of Dirac particles, i.e. essential self-adjointness of the operator, solely by magnetic fields B assumed to grow, near ∂ Ω , faster than 1 / ( 2 dist ( x , ∂ Ω ) 2 ) .
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-021-04129-4