Loop Groups and QNEC

We construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group LG . For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-10, Vol.387 (1), p.397-426
1. Verfasser: Panebianco, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group LG . For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we show that a Positive Energy Representation of a loop group LG can be extended to a PER of H s ( S 1 , G ) for s > 3 / 2 , where G is any compact, simple and simply connected Lie group. We also show the existence of the exponential map of the semidirect product L G ⋊ R , with R a one-parameter subgroup of Diff + ( S 1 ) , and we compute the adjoint action of H s + 1 ( S 1 , G ) on the stress energy tensor.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-021-04170-3