Loop Groups and QNEC
We construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group LG . For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-10, Vol.387 (1), p.397-426 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct and study solitonic representations of the conformal net associated to some vacuum Positive Energy Representation (PER) of a loop group
LG
. For the corresponding solitonic states, we prove the Quantum Null Energy Condition (QNEC) and the Bekenstein Bound. As an intermediate result, we show that a Positive Energy Representation of a loop group
LG
can be extended to a PER of
H
s
(
S
1
,
G
)
for
s
>
3
/
2
, where
G
is any compact, simple and simply connected Lie group. We also show the existence of the exponential map of the semidirect product
L
G
⋊
R
, with
R
a one-parameter subgroup of
Diff
+
(
S
1
)
, and we compute the adjoint action of
H
s
+
1
(
S
1
,
G
)
on the stress energy tensor. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-021-04170-3 |