Quantitative Transfer of Regularity of the Incompressible Navier–Stokes Equations from R3 to the Case of a Bounded Domain
Let u 0 ∈ C 0 5 ( B R 0 ) be divergence-free and suppose that u is a strong solution of the three-dimensional incompressible Navier–Stokes equations on [0, T ] in the whole space R 3 such that ‖ u ‖ L ∞ ( ( 0 , T ) ; H 5 ( R 3 ) ) + ‖ u ‖ L ∞ ( ( 0 , T ) ; W 5 , ∞ ( R 3 ) ) ≤ M < ∞ . We show tha...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical fluid mechanics 2021, Vol.23 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
u
0
∈
C
0
5
(
B
R
0
)
be divergence-free and suppose that
u
is a strong solution of the three-dimensional incompressible Navier–Stokes equations on [0,
T
] in the whole space
R
3
such that
‖
u
‖
L
∞
(
(
0
,
T
)
;
H
5
(
R
3
)
)
+
‖
u
‖
L
∞
(
(
0
,
T
)
;
W
5
,
∞
(
R
3
)
)
≤
M
<
∞
. We show that then there exists a unique strong solution
w
to the problem posed on
B
R
with the homogeneous Dirichlet boundary conditions, with the same initial data and on the same time interval for
R
≥
max
(
1
+
R
0
,
C
(
a
)
C
(
M
)
1
/
a
exp
(
C
M
4
T
/
a
)
)
for any
a
∈
[
0
,
3
/
2
)
, and we give quantitative estimates on
u
-
w
and the corresponding pressure functions. |
---|---|
ISSN: | 1422-6928 1422-6952 |
DOI: | 10.1007/s00021-021-00623-w |