Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS

The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-09, Vol.1085 (4), p.42042
Hauptverfasser: Acosta, Darin, Brinkerhoff, Andrew, Busch, Elena, Carnes, Andrew, Furic, Ivan, Gleyzer, Sergei, Kotov, Khristian, Low, Jia Fu, Madorsky, Alexander, Rorie, Jamal, Scurlock, Bobby, Shi, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combinations of these variables representing 230 distinct patterns are evaluated offline using regression BDTs. The predictions for the 230 input variable combinations are stored in a 1.2 GB look-up table in the EMTF hardware. The BDTs take advantage of complex correlations between variables, the inhomogeneous magnetic field, and non-linear effects - like inelastic scattering - to distinguish high momentum signal muons from the overwhelming low-momentum background. The new momentum algorithm reduced the background rate by a factor of three with respect to the previous analytic algorithm, with further improvements foreseen in the coming year.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1085/4/042042