Assessment of design and analysis frameworks for on-farm experimentation through a simulation study of wheat yield in Japan
On-farm experiments can provide farmers with information on more efficient crop management in their own fields. Developments in precision agricultural technologies, such as yield monitoring and variable-rate application technology, allow farmers to implement on-farm experiments. Research frameworks...
Gespeichert in:
Veröffentlicht in: | Precision agriculture 2021-10, Vol.22 (5), p.1601-1616 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On-farm experiments can provide farmers with information on more efficient crop management in their own fields. Developments in precision agricultural technologies, such as yield monitoring and variable-rate application technology, allow farmers to implement on-farm experiments. Research frameworks including the experimental design and the statistical analysis method strongly influences the precision of the experiment. Conventional statistical approaches (e.g., ordinary least squares regression) may not be appropriate for on-farm experiments because they are not capable of accurately accounting for the underlying spatial variation in a particular response variable (e.g., yield data). The effects of experimental designs and statistical approaches on type I error rates and estimation accuracy were explored through a simulation study hypothetically conducted on experiments in three wheat fields in Japan. Isotropic and anisotropic spatial linear mixed models were established for comparison with ordinary least squares regression models. The repeated designs were not sufficient to reduce both the risk of a type I error and the estimation bias on their own. A combination of a repeated design and an anisotropic model is sometimes required to improve the precision of the experiments. Model selection should be performed to determine whether the anisotropic model is required for analysis of any specific field. The anisotropic model had larger standard errors than the other models, especially when the estimates had large biases. This finding highlights an advantage of anisotropic models since they enable experimenters to cautiously consider the reliability of the estimates when they have a large bias. |
---|---|
ISSN: | 1385-2256 1573-1618 |
DOI: | 10.1007/s11119-021-09802-1 |