A Simple Logic of Functional Dependence
This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive stre...
Gespeichert in:
Veröffentlicht in: | Journal of philosophical logic 2021-10, Vol.50 (5), p.939-1005 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 5 |
container_start_page | 939 |
container_title | Journal of philosophical logic |
container_volume | 50 |
creator | Baltag, Alexandru van Benthem, Johan |
description | This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games. |
doi_str_mv | 10.1007/s10992-020-09588-z |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2572356029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45406283</jstor_id><sourcerecordid>45406283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5CQIjEwGZ6fP2KPVaGAVIkBmK3acapUbRLsZKC_npQg2Jjecs-9T4eQSwa3DCC_SwyMQQoIFIzUmu6PyITJnFMQnB-TCQAi5YqxU3KW0gYANOP5hNzMstdq125DtmzWlc-aMlv0te-qpl5ts_vQhroItQ_n5KRcbVO4-LlT8r54eJs_0eXL4_N8tqSea9nRUIDRXmnnhEbhA2rDFOQBFRRopAsyoEGphHNQ5K7QHEWpnQHNC-ZLw6fkeuxtY_PRh9TZTdPH4ZdkUebIpQI8pHBM-dikFENp21jtVvHTMrAHIXYUYgch9luI3Q8QH6E0hOt1iH_V_1JXI7VJXRN_d4QUoFBz_gWw-2ru</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572356029</pqid></control><display><type>article</type><title>A Simple Logic of Functional Dependence</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baltag, Alexandru ; van Benthem, Johan</creator><creatorcontrib>Baltag, Alexandru ; van Benthem, Johan</creatorcontrib><description>This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-020-09588-z</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Education ; Food ; Logic ; Philosophy ; Quantifiers ; Restaurants ; Semantics ; Variables</subject><ispartof>Journal of philosophical logic, 2021-10, Vol.50 (5), p.939-1005</ispartof><rights>Springer Nature B.V. 2021</rights><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</citedby><cites>FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10992-020-09588-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10992-020-09588-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>van Benthem, Johan</creatorcontrib><title>A Simple Logic of Functional Dependence</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.</description><subject>Education</subject><subject>Food</subject><subject>Logic</subject><subject>Philosophy</subject><subject>Quantifiers</subject><subject>Restaurants</subject><subject>Semantics</subject><subject>Variables</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5CQIjEwGZ6fP2KPVaGAVIkBmK3acapUbRLsZKC_npQg2Jjecs-9T4eQSwa3DCC_SwyMQQoIFIzUmu6PyITJnFMQnB-TCQAi5YqxU3KW0gYANOP5hNzMstdq125DtmzWlc-aMlv0te-qpl5ts_vQhroItQ_n5KRcbVO4-LlT8r54eJs_0eXL4_N8tqSea9nRUIDRXmnnhEbhA2rDFOQBFRRopAsyoEGphHNQ5K7QHEWpnQHNC-ZLw6fkeuxtY_PRh9TZTdPH4ZdkUebIpQI8pHBM-dikFENp21jtVvHTMrAHIXYUYgch9luI3Q8QH6E0hOt1iH_V_1JXI7VJXRN_d4QUoFBz_gWw-2ru</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Baltag, Alexandru</creator><creator>van Benthem, Johan</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20211001</creationdate><title>A Simple Logic of Functional Dependence</title><author>Baltag, Alexandru ; van Benthem, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Education</topic><topic>Food</topic><topic>Logic</topic><topic>Philosophy</topic><topic>Quantifiers</topic><topic>Restaurants</topic><topic>Semantics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>van Benthem, Johan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences & Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design & Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts & Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltag, Alexandru</au><au>van Benthem, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Logic of Functional Dependence</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>50</volume><issue>5</issue><spage>939</spage><epage>1005</epage><pages>939-1005</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10992-020-09588-z</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3611 |
ispartof | Journal of philosophical logic, 2021-10, Vol.50 (5), p.939-1005 |
issn | 0022-3611 1573-0433 |
language | eng |
recordid | cdi_proquest_journals_2572356029 |
source | SpringerLink Journals - AutoHoldings |
subjects | Education Food Logic Philosophy Quantifiers Restaurants Semantics Variables |
title | A Simple Logic of Functional Dependence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Logic%20of%20Functional%20Dependence&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Baltag,%20Alexandru&rft.date=2021-10-01&rft.volume=50&rft.issue=5&rft.spage=939&rft.epage=1005&rft.pages=939-1005&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-020-09588-z&rft_dat=%3Cjstor_proqu%3E45406283%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572356029&rft_id=info:pmid/&rft_jstor_id=45406283&rfr_iscdi=true |