A Simple Logic of Functional Dependence

This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of philosophical logic 2021-10, Vol.50 (5), p.939-1005
Hauptverfasser: Baltag, Alexandru, van Benthem, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 5
container_start_page 939
container_title Journal of philosophical logic
container_volume 50
creator Baltag, Alexandru
van Benthem, Johan
description This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.
doi_str_mv 10.1007/s10992-020-09588-z
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2572356029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45406283</jstor_id><sourcerecordid>45406283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5CQIjEwGZ6fP2KPVaGAVIkBmK3acapUbRLsZKC_npQg2Jjecs-9T4eQSwa3DCC_SwyMQQoIFIzUmu6PyITJnFMQnB-TCQAi5YqxU3KW0gYANOP5hNzMstdq125DtmzWlc-aMlv0te-qpl5ts_vQhroItQ_n5KRcbVO4-LlT8r54eJs_0eXL4_N8tqSea9nRUIDRXmnnhEbhA2rDFOQBFRRopAsyoEGphHNQ5K7QHEWpnQHNC-ZLw6fkeuxtY_PRh9TZTdPH4ZdkUebIpQI8pHBM-dikFENp21jtVvHTMrAHIXYUYgch9luI3Q8QH6E0hOt1iH_V_1JXI7VJXRN_d4QUoFBz_gWw-2ru</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572356029</pqid></control><display><type>article</type><title>A Simple Logic of Functional Dependence</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baltag, Alexandru ; van Benthem, Johan</creator><creatorcontrib>Baltag, Alexandru ; van Benthem, Johan</creatorcontrib><description>This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.</description><identifier>ISSN: 0022-3611</identifier><identifier>EISSN: 1573-0433</identifier><identifier>DOI: 10.1007/s10992-020-09588-z</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Education ; Food ; Logic ; Philosophy ; Quantifiers ; Restaurants ; Semantics ; Variables</subject><ispartof>Journal of philosophical logic, 2021-10, Vol.50 (5), p.939-1005</ispartof><rights>Springer Nature B.V. 2021</rights><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</citedby><cites>FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10992-020-09588-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10992-020-09588-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>van Benthem, Johan</creatorcontrib><title>A Simple Logic of Functional Dependence</title><title>Journal of philosophical logic</title><addtitle>J Philos Logic</addtitle><description>This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.</description><subject>Education</subject><subject>Food</subject><subject>Logic</subject><subject>Philosophy</subject><subject>Quantifiers</subject><subject>Restaurants</subject><subject>Semantics</subject><subject>Variables</subject><issn>0022-3611</issn><issn>1573-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AIMQZ</sourceid><sourceid>AVQMV</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>K50</sourceid><sourceid>M1D</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5CQIjEwGZ6fP2KPVaGAVIkBmK3acapUbRLsZKC_npQg2Jjecs-9T4eQSwa3DCC_SwyMQQoIFIzUmu6PyITJnFMQnB-TCQAi5YqxU3KW0gYANOP5hNzMstdq125DtmzWlc-aMlv0te-qpl5ts_vQhroItQ_n5KRcbVO4-LlT8r54eJs_0eXL4_N8tqSea9nRUIDRXmnnhEbhA2rDFOQBFRRopAsyoEGphHNQ5K7QHEWpnQHNC-ZLw6fkeuxtY_PRh9TZTdPH4ZdkUebIpQI8pHBM-dikFENp21jtVvHTMrAHIXYUYgch9luI3Q8QH6E0hOt1iH_V_1JXI7VJXRN_d4QUoFBz_gWw-2ru</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Baltag, Alexandru</creator><creator>van Benthem, Johan</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AIMQZ</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GB0</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K50</scope><scope>LIQON</scope><scope>M1D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20211001</creationdate><title>A Simple Logic of Functional Dependence</title><author>Baltag, Alexandru ; van Benthem, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-ed098c68bb4824ce2891607e260d295be5e292564bb0d7bd8324f8b9083d1cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Education</topic><topic>Food</topic><topic>Logic</topic><topic>Philosophy</topic><topic>Quantifiers</topic><topic>Restaurants</topic><topic>Semantics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baltag, Alexandru</creatorcontrib><creatorcontrib>van Benthem, Johan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest One Literature</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>DELNET Social Sciences &amp; Humanities Collection</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Art, Design &amp; Architecture Collection</collection><collection>ProQuest One Literature - U.S. Customers Only</collection><collection>Arts &amp; Humanities Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of philosophical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baltag, Alexandru</au><au>van Benthem, Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Logic of Functional Dependence</atitle><jtitle>Journal of philosophical logic</jtitle><stitle>J Philos Logic</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>50</volume><issue>5</issue><spage>939</spage><epage>1005</epage><pages>939-1005</pages><issn>0022-3611</issn><eissn>1573-0433</eissn><abstract>This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10992-020-09588-z</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3611
ispartof Journal of philosophical logic, 2021-10, Vol.50 (5), p.939-1005
issn 0022-3611
1573-0433
language eng
recordid cdi_proquest_journals_2572356029
source SpringerLink Journals - AutoHoldings
subjects Education
Food
Logic
Philosophy
Quantifiers
Restaurants
Semantics
Variables
title A Simple Logic of Functional Dependence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Logic%20of%20Functional%20Dependence&rft.jtitle=Journal%20of%20philosophical%20logic&rft.au=Baltag,%20Alexandru&rft.date=2021-10-01&rft.volume=50&rft.issue=5&rft.spage=939&rft.epage=1005&rft.pages=939-1005&rft.issn=0022-3611&rft.eissn=1573-0433&rft_id=info:doi/10.1007/s10992-020-09588-z&rft_dat=%3Cjstor_proqu%3E45406283%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572356029&rft_id=info:pmid/&rft_jstor_id=45406283&rfr_iscdi=true