A Simple Logic of Functional Dependence

This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of philosophical logic 2021-10, Vol.50 (5), p.939-1005
Hauptverfasser: Baltag, Alexandru, van Benthem, Johan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.
ISSN:0022-3611
1573-0433
DOI:10.1007/s10992-020-09588-z