A Comparative Study of Stochastic Optimizers for Fitting Neuron Models. Application to the Cerebellar Granule Cell

This work compares different algorithms to replace the genetic optimizer used in a recent methodology for creating realistic and computationally efficient neuron models. That method focuses on single-neuron processing and has been applied to cerebellar granule cells. It relies on the adaptive-expone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Informatica (Vilnius, Lithuania) Lithuania), 2021, Vol.32 (3), p.477-498
Hauptverfasser: Cruz, Nicolás C., Marín, Milagros, Redondo, Juana L., Ortigosa, Eva M., Ortigosa, Pilar M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work compares different algorithms to replace the genetic optimizer used in a recent methodology for creating realistic and computationally efficient neuron models. That method focuses on single-neuron processing and has been applied to cerebellar granule cells. It relies on the adaptive-exponential integrate-and-fire (AdEx) model, which must be adjusted with experimental data. The alternatives considered are: i) a memetic extension of the original genetic method, ii) Differential Evolution, iii) Teaching-Learning-Based Optimization, and iv) a local optimizer within a multi-start procedure. All of them ultimately outperform the original method, and the last two do it in all the scenarios considered.
ISSN:0868-4952
1822-8844
DOI:10.15388/21-INFOR450