Super (a,d)-H-antimagic covering of möbius ladder graph
Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-04, Vol.1008 (1), p.12047 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12047 |
container_title | Journal of physics. Conference series |
container_volume | 1008 |
creator | Indriyani, Novia Sri Martini, Titin |
description | Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , ... , | V ( G ) | + | E ( G ) | } . The H−-weights for all subgraphs H− isomorphic to H ω ( H ′ ) = ∑ v ∈ V ( H ′ ) ξ ( v ) + ∑ e ∈ E ( H ′ ) ξ ( e ) . The weights of subgraphs constitutes an arithmatic progression {a, a + d, ..., a + (t − 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ ( V ( G ) ) = { 1 , 2 , ... , | V ( G ) | } then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd. |
doi_str_mv | 10.1088/1742-6596/1008/1/012047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2572206931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572206931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-50c0bda45bb067b66f2b6edeb346dab84933090b8d7329cb22b33fcdff19bc7c3</originalsourceid><addsrcrecordid>eNqFkN9KwzAUh4MoOKfPYMEbFetOkjZJL2WoUwYK0-uQv7NjW2u6Cr6YL-CLmVKZCIK5SQ75zu9wPoSOMVxiEGKEeUZSlhdshAFiOQJMIOM7aLD92d2-hdhHB02zAKDx8AESs7Z2ITlVF_YsnaRqvSlXal6axFRvLpTreVL5ZPX5ocu2SZbK2gjPg6pfDtGeV8vGHX3fQ_R8c_00nqTTh9u78dU0NUQUmzQHA9qqLNcaGNeMeaKZs07TjFmlRVZQCgVoYTklhdGEaEq9sd7jQhtu6BCd9Ll1qF5b12zkomrDOo6UJOeEACsojhTvKROqpgnOyzrERcK7xCA7TbITIDsZstMksew1xc7zvrOs6p_o-8fx7Dcoa-sjTP-A_xvxBd0odpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572206931</pqid></control><display><type>article</type><title>Super (a,d)-H-antimagic covering of möbius ladder graph</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Indriyani, Novia ; Sri Martini, Titin</creator><creatorcontrib>Indriyani, Novia ; Sri Martini, Titin</creatorcontrib><description>Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , ... , | V ( G ) | + | E ( G ) | } . The H−-weights for all subgraphs H− isomorphic to H ω ( H ′ ) = ∑ v ∈ V ( H ′ ) ξ ( v ) + ∑ e ∈ E ( H ′ ) ξ ( e ) . The weights of subgraphs constitutes an arithmatic progression {a, a + d, ..., a + (t − 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ ( V ( G ) ) = { 1 , 2 , ... , | V ( G ) | } then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1008/1/012047</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Graph theory ; Physics</subject><ispartof>Journal of physics. Conference series, 2018-04, Vol.1008 (1), p.12047</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-50c0bda45bb067b66f2b6edeb346dab84933090b8d7329cb22b33fcdff19bc7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1008/1/012047/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Indriyani, Novia</creatorcontrib><creatorcontrib>Sri Martini, Titin</creatorcontrib><title>Super (a,d)-H-antimagic covering of möbius ladder graph</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , ... , | V ( G ) | + | E ( G ) | } . The H−-weights for all subgraphs H− isomorphic to H ω ( H ′ ) = ∑ v ∈ V ( H ′ ) ξ ( v ) + ∑ e ∈ E ( H ′ ) ξ ( e ) . The weights of subgraphs constitutes an arithmatic progression {a, a + d, ..., a + (t − 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ ( V ( G ) ) = { 1 , 2 , ... , | V ( G ) | } then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd.</description><subject>Graph theory</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkN9KwzAUh4MoOKfPYMEbFetOkjZJL2WoUwYK0-uQv7NjW2u6Cr6YL-CLmVKZCIK5SQ75zu9wPoSOMVxiEGKEeUZSlhdshAFiOQJMIOM7aLD92d2-hdhHB02zAKDx8AESs7Z2ITlVF_YsnaRqvSlXal6axFRvLpTreVL5ZPX5ocu2SZbK2gjPg6pfDtGeV8vGHX3fQ_R8c_00nqTTh9u78dU0NUQUmzQHA9qqLNcaGNeMeaKZs07TjFmlRVZQCgVoYTklhdGEaEq9sd7jQhtu6BCd9Ll1qF5b12zkomrDOo6UJOeEACsojhTvKROqpgnOyzrERcK7xCA7TbITIDsZstMksew1xc7zvrOs6p_o-8fx7Dcoa-sjTP-A_xvxBd0odpg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Indriyani, Novia</creator><creator>Sri Martini, Titin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180401</creationdate><title>Super (a,d)-H-antimagic covering of möbius ladder graph</title><author>Indriyani, Novia ; Sri Martini, Titin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-50c0bda45bb067b66f2b6edeb346dab84933090b8d7329cb22b33fcdff19bc7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Graph theory</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indriyani, Novia</creatorcontrib><creatorcontrib>Sri Martini, Titin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indriyani, Novia</au><au>Sri Martini, Titin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super (a,d)-H-antimagic covering of möbius ladder graph</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>1008</volume><issue>1</issue><spage>12047</spage><pages>12047-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , ... , | V ( G ) | + | E ( G ) | } . The H−-weights for all subgraphs H− isomorphic to H ω ( H ′ ) = ∑ v ∈ V ( H ′ ) ξ ( v ) + ∑ e ∈ E ( H ′ ) ξ ( e ) . The weights of subgraphs constitutes an arithmatic progression {a, a + d, ..., a + (t − 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ ( V ( G ) ) = { 1 , 2 , ... , | V ( G ) | } then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1008/1/012047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-04, Vol.1008 (1), p.12047 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2572206931 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Graph theory Physics |
title | Super (a,d)-H-antimagic covering of möbius ladder graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20(a,d)-H-antimagic%20covering%20of%20m%C3%B6bius%20ladder%20graph&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Indriyani,%20Novia&rft.date=2018-04-01&rft.volume=1008&rft.issue=1&rft.spage=12047&rft.pages=12047-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1008/1/012047&rft_dat=%3Cproquest_iop_j%3E2572206931%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572206931&rft_id=info:pmid/&rfr_iscdi=true |