Super (a,d)-H-antimagic covering of möbius ladder graph
Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-04, Vol.1008 (1), p.12047 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G = (V(G), E(G)) be a simple graph. Let H-covering of G is a subgraph H1, H2, ..., Hj with every edge in G is contained in at least one graph Hi for 1 ≤ i ≤ j. If every Hi is isomorphic, then G admits an H-covering. Furthermore, an (a,d)-H-antimagic covering if there bijective function ξ : V ( G ) ∪ E ( G ) → { 1 , 2 , 3 , ... , | V ( G ) | + | E ( G ) | } . The H−-weights for all subgraphs H− isomorphic to H ω ( H ′ ) = ∑ v ∈ V ( H ′ ) ξ ( v ) + ∑ e ∈ E ( H ′ ) ξ ( e ) . The weights of subgraphs constitutes an arithmatic progression {a, a + d, ..., a + (t − 1)d} where a and d are positive integers and t is the number of subgraphs G isomorphic to H. If ξ ( V ( G ) ) = { 1 , 2 , ... , | V ( G ) | } then ξ is called super (a, d)-H-antimagic covering. The research provides super (a, d)-H-antimagic covering with d = {1, 3} of Möbius ladder graph Mn for n > 5 and n is odd. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1008/1/012047 |