Rerating the Movie Scores in Douban through Word Embedding

The movie scores in the social networking service website such as IMDb, Totten Tomatoes and Douban are important references to evaluate the movies. Always, it will influence the box office directly. However, the public rating has strong bias depended on the types of movies, release time, and ages an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-04, Vol.1004 (1), p.12030
1. Verfasser: Cui, Mingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The movie scores in the social networking service website such as IMDb, Totten Tomatoes and Douban are important references to evaluate the movies. Always, it will influence the box office directly. However, the public rating has strong bias depended on the types of movies, release time, and ages and background of the audiences. To fix the bias and give a movie a fair judgement is an important problem. In the paper, we focus on the movie scores on Douban, which is one of the most famous Chinese movie network community. We decompose the movie scores into two parts. One is the basis scores based on the basic properties of movies. The other is the extra scores which represent the excess value of the movies. We use the word-embedding technique to reduce the movies in a small dense subspace. Then, in the reduced subspace, we use the k-means method to offer the similar movies a basis scores.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1004/1/012030