Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser
Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2018-03, Vol.990 (1), p.12004 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/990/1/012004 |