Use of open-ended problems as the basis for the mathematical creativity growth disclosure of student

Mathematical creativity is the essence of learning in mathematics. However, mathematical creativity had not yet grown among students. Means there was a gap between needs and reality. This gap must be bridged through by scientific studies, and there were novelty findings, namely the discovery of stag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-03, Vol.983 (1), p.12110
Hauptverfasser: Suyitno, A, Suyitno, H, Rochmad, Dwijanto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mathematical creativity is the essence of learning in mathematics. However, mathematical creativity had not yet grown among students. Means there was a gap between needs and reality. This gap must be bridged through by scientific studies, and there were novelty findings, namely the discovery of stages to cultivate of Mathematical Creativity. The problem formulation: How to use of open-ended problems as the basis for the mathematical creativity growth disclosure of student? The goal was to use of open issues as the basis for the mathematical creativity growth disclosure of student. Research method with a qualitative approach. After data was collected then activity in data analysis, include data reduction, data presentation, data interpretation, and conclusion/verification. The results of the research: After the learning by applying the modification of RTTW learning model, then the students were trained to do the open-ended problems and by looking at the UTS and UAS values then qualitatively the results: (1) There was a significant increase of the student's final score. (2) The category of the growth of mathematical creativity of students, the Very Good there were three students, the Good there were six students, There were 17 students, and there were six students. The validation of these results was reinforced by interviews and triangulation. (3) Stage to cultivate mathematical creativity: lecturers should need to provide inputs on student work; Apply an appropriate learning model, and train students to work on the continuing problems.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/983/1/012110