Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field

In this study, dynamic stability analysis of viscoelastic carbon nanotubes (CNTs) conveying pulsating magnetic nanoflow subjected to a longitudinal magnetic field is investigated. Based on Hamilton’s principle, the governing equations as well as boundary conditions, are extracted. The dynamic instab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2021-10, Vol.37 (4), p.2877-2889
Hauptverfasser: Bahaadini, Reza, Hosseini, Mohammad, Amiri, Mina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, dynamic stability analysis of viscoelastic carbon nanotubes (CNTs) conveying pulsating magnetic nanoflow subjected to a longitudinal magnetic field is investigated. Based on Hamilton’s principle, the governing equations as well as boundary conditions, are extracted. The dynamic instability region and pulsation frequency of the CNTs are obtained through both the Galerkin technique and the Bolotin method. The effects of the nonlocal parameter gather with strain gradient parameter, Knudsen number, magnetic field, mass fluid ratio, fluid velocity, tension, gravity, viscoelastic characteristic of materials and boundary conditions on the dynamic instability of system are deliberated. The results indicate that increase in the pulsation frequency is caused by the decrease of nonlocal parameter and the increase of strain gradient parameter. Besides, it is revealed that by increasing Knudsen number the pulsation frequency decreases. Furthermore, the dynamic instability region and pulsation frequency of CNT can be enhanced due to the magnetic field effects.
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-020-00980-6