Modeling Data Containing Outliers using ARIMA Additive Outlier (ARIMA-AO)

The aim this study is discussed on the detection and correction of data containing the additive outlier (AO) on the model ARIMA (p, d, q). The process of detection and correction of data using an iterative procedure popularized by Box, Jenkins, and Reinsel (1994). By using this method we obtained an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2018-01, Vol.954 (1), p.12010
Hauptverfasser: Ahmar, Ansari Saleh, Guritno, Suryo, Abdurakhman, Rahman, Abdul, Awi, Alimuddin, Minggi, Ilham, Tiro, M Arif, Aidid, M Kasim, Annas, Suwardi, Sutiksno, Dian Utami, Ahmar, Dewi S, Ahmar, Kurniawan H, Ahmar, A Abqary, Zaki, Ahmad, Abdullah, Dahlan, Rahim, Robbi, Nurdiyanto, Heri, Hidayat, Rahmat, Napitupulu, Darmawan, Simarmata, Janner, Kurniasih, Nuning, Abdillah, Leon Andretti, Pranolo, Andri, Haviluddin, Albra, Wahyudin, Arifin, A Nurani M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim this study is discussed on the detection and correction of data containing the additive outlier (AO) on the model ARIMA (p, d, q). The process of detection and correction of data using an iterative procedure popularized by Box, Jenkins, and Reinsel (1994). By using this method we obtained an ARIMA models were fit to the data containing AO, this model is added to the original model of ARIMA coefficients obtained from the iteration process using regression methods. In the simulation data is obtained that the data contained AO initial models are ARIMA (2,0,0) with MSE = 36,780, after the detection and correction of data obtained by the iteration of the model ARIMA (2,0,0) with the coefficients obtained from the regression Zt = 0,106+0,204Zt−1+0,401Zt−2−329X1(t)+115X2(t)+35,9X3(t) and MSE = 19,365. This shows that there is an improvement of forecasting error rate data.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/954/1/012010