Importance of tidal resonances in extreme-mass-ratio inspirals

Extreme mass ratio inspirals (EMRIs) will be important sources for future space-based gravitational-wave detectors. In recent work, tidal resonances in binary orbital evolution induced by the tidal field of nearby stars or black holes have been identified as being potentially significant in the cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-08, Vol.104 (4), p.1, Article 044056
Hauptverfasser: Gupta, Priti, Bonga, Béatrice, Chua, Alvin J. K., Tanaka, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extreme mass ratio inspirals (EMRIs) will be important sources for future space-based gravitational-wave detectors. In recent work, tidal resonances in binary orbital evolution induced by the tidal field of nearby stars or black holes have been identified as being potentially significant in the context of extreme mass-ratio inspirals. These resonances occur when the three orbital frequencies describing the orbit are commensurate. During the resonance, the orbital parameters of the small body experience a "jump" leading to a shift in the phase of the gravitational waveform. In this paper, we treat the tidal perturber as stationary and restricted to the equatorial plane, and present a first study of how common and important such resonances are over the entire orbital parameter space. We find that a large proportion of inspirals encounter a low-order resonance in the observationally important regime. While the "instantaneous" effect of a tidal resonance is small, its effect on the accumulated phase of the gravitational waveform of an EMRI system can be significant due to its many cycles in band; we estimate that the effect is detectable for a significant fraction of sources. We also provide fitting formulas for the induced change in the constants of motion of the orbit due to the tidal resonance for several low-order resonances.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.104.044056