Induced vacuum magnetic field in the cosmic string background

The relativistic charged spinor matter field is quantized in the background of a straight cosmic string with nonvanishing transverse size. The most general boundary conditions ensuring the impossibility for matter to penetrate through the edge of the string core are considered. The role of discrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-08, Vol.104 (4), p.1, Article 045013
1. Verfasser: Sitenko, Yurii A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relativistic charged spinor matter field is quantized in the background of a straight cosmic string with nonvanishing transverse size. The most general boundary conditions ensuring the impossibility for matter to penetrate through the edge of the string core are considered. The role of discrete symmetries is elucidated, and analytic expressions for the temporal and spatial components of the induced vacuum current are derived in the case of either P or CT invariant boundary condition with two parameters varying arbitrarily from point to point of the edge. The requirement of physical plausibility for the global induced vacuum characteristics is shown to remove completely an arbitrariness in boundary conditions. We find out that a magnetic field is induced in the vacuum and that a sheath in the form of a tube of the magnetic flux lines encloses a cosmic string. The dependence of the induced vacuum magnetic field strength on the string flux and tension, as well as on the transverse size of the string and on the distance from the string, is unambiguously determined.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.104.045013