Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD

Four different applications of spectral proper orthogonal decomposition (SPOD) are demonstrated on large-eddy simulation data of a turbulent jet. These are: low-rank reconstruction, denoising, frequency–time analysis and prewhitening. We demonstrate SPOD-based flow-field reconstruction using direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-11, Vol.926, Article A26
Hauptverfasser: Nekkanti, Akhil, Schmidt, Oliver T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four different applications of spectral proper orthogonal decomposition (SPOD) are demonstrated on large-eddy simulation data of a turbulent jet. These are: low-rank reconstruction, denoising, frequency–time analysis and prewhitening. We demonstrate SPOD-based flow-field reconstruction using direct inversion of the SPOD algorithm (frequency-domain approach) and propose an alternative approach based on projection of the time series data onto the modes (time-domain approach). We further present a SPOD-based denoising strategy that is based on hard thresholding of the SPOD eigenvalues. The proposed strategy achieves significant noise reduction while facilitating drastic data compression. In contrast to standard methods of frequency–time analysis such as wavelet transform, a proposed SPOD-based approach yields a spectrogram that characterises the temporal evolution of spatially coherent flow structures. A convolution-based strategy is proposed to compute the time-continuous expansion coefficients. When applied to the turbulent jet data, SPOD-based frequency–time analysis reveals that the intermittent occurrence of large-scale coherent structures is directly associated with high-energy events. This work suggests that the time-domain approach is preferable for low-rank reconstruction of individual snapshots, and the frequency-domain approach for denoising and frequency–time analysis.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2021.681