Linear forms in logarithms and the mathematical method of diophantine equations: applications in chemistry and physics

In this paper, we established the bound of n in term of p of the following equation F n = 2 p with n , p ≥ 0 where { F n } n ≥ 0 represent Fibonacci sequence defined by the following relation : F 0 = 0 , F 1 = 1 et F n + 1 = F n + F n - 1 for all n ≥ 1 . The method used here is the linear forms in l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2021-10, Vol.59 (9), p.2009-2020
Hauptverfasser: Tiebekabe, Pagdame, Diouf, Ismaïla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we established the bound of n in term of p of the following equation F n = 2 p with n , p ≥ 0 where { F n } n ≥ 0 represent Fibonacci sequence defined by the following relation : F 0 = 0 , F 1 = 1 et F n + 1 = F n + F n - 1 for all n ≥ 1 . The method used here is the linear forms in logarithm introduced by the British mathematician Alan Baker in 1966 (Field medal 1970). We show in this paper, how to choose the parameters involving in the- determination of the bound of n in term of p and applications of mathematical method of Diophantine equations in Physics and Chemistry.
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-021-01274-y