Boundary Growth Rates and Exceptional Sets for Superharmonic Functions on the Real Hyperbolic Ball
We present a sharp upper bound of the Hausdorff dimension of an exceptional set in the unit sphere where a positive superharmonic function with respect to the hyperbolic Laplacian on the unit ball blows up faster than a prescribed order.
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2021-11, Vol.31 (11), p.10586-10602 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a sharp upper bound of the Hausdorff dimension of an exceptional set in the unit sphere where a positive superharmonic function with respect to the hyperbolic Laplacian on the unit ball blows up faster than a prescribed order. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-021-00657-6 |