Comparative implementation between neuro-emotional genetic algorithm and novel ensemble computing techniques for modelling dissolved oxygen concentration

Accurate prediction of dissolved oxygen (DO) concentration is important for managing healthy aquatic ecosystems. This study investigates the comparative potential of the emotional artificial neural network-genetic algorithm (EANN-GA), and three ensemble techniques, i.e. emotional artificial neural n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological sciences journal 2021-07, Vol.66 (10), p.1584-1596
Hauptverfasser: Abba, S. I., Abdulkadir, R. A., Sammen, Saad Sh, Usman, A. G., Meshram, Sarita Gajbhiye, Malik, Anurag, Shahid, Shamsuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate prediction of dissolved oxygen (DO) concentration is important for managing healthy aquatic ecosystems. This study investigates the comparative potential of the emotional artificial neural network-genetic algorithm (EANN-GA), and three ensemble techniques, i.e. emotional artificial neural network (EANN), feedforward neural network (FFNN), and neural network ensemble (NNE), to predict DO concentration in the Kinta River basin of Malaysia. The performance of EANN-GA, EANN, FFNN, and NNE models in predicting DO was evaluated using statistical metrics and visual interpretation. Appraisal of the results revealed a promising performance of the NNE-M3 model (Nash-Sutcliffe efficiency (NSE) = 0.8743/0.8630, correlation coefficient (CC) = 0.9351/0.9113, mean square error (MSE) = 0.5757/0.6833 mg/L, root mean square error (RMSE) = 0.7588/0.8266 mg/L, and mean absolute percentage error (MAPE) = 20.6581/14.1675) during the calibration/validation period compared to EANN-GA, EANN, and FFNN models in DO prediction in the study basin.
ISSN:0262-6667
2150-3435
DOI:10.1080/02626667.2021.1937179