Bipartite-ness under smooth conditions
Given a family \(\mathcal{F}\) of bipartite graphs, the {\it Zarankiewicz number} \(z(m,n,\mathcal{F})\) is the maximum number of edges in an \(m\) by \(n\) bipartite graph \(G\) that does not contain any member of \(\mathcal{F}\) as a subgraph (such \(G\) is called {\it \(\mathcal{F}\)-free}). For...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a family \(\mathcal{F}\) of bipartite graphs, the {\it Zarankiewicz number} \(z(m,n,\mathcal{F})\) is the maximum number of edges in an \(m\) by \(n\) bipartite graph \(G\) that does not contain any member of \(\mathcal{F}\) as a subgraph (such \(G\) is called {\it \(\mathcal{F}\)-free}). For \(1\leq \beta |
---|---|
ISSN: | 2331-8422 |