Bipartite-ness under smooth conditions

Given a family \(\mathcal{F}\) of bipartite graphs, the {\it Zarankiewicz number} \(z(m,n,\mathcal{F})\) is the maximum number of edges in an \(m\) by \(n\) bipartite graph \(G\) that does not contain any member of \(\mathcal{F}\) as a subgraph (such \(G\) is called {\it \(\mathcal{F}\)-free}). For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Jiang, Tao, Longbrake, Sean, Ma, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a family \(\mathcal{F}\) of bipartite graphs, the {\it Zarankiewicz number} \(z(m,n,\mathcal{F})\) is the maximum number of edges in an \(m\) by \(n\) bipartite graph \(G\) that does not contain any member of \(\mathcal{F}\) as a subgraph (such \(G\) is called {\it \(\mathcal{F}\)-free}). For \(1\leq \beta
ISSN:2331-8422