Stretch-flangeability correlated with hardness distribution and strain-hardenability of constituent phases in dual- and complex-phase steels

Stretch-flangeability as a parameter of formability is measured on dual-phase (DP) and complex-phase (CP) steels by the hole-expansion ratio (HER), and nanoindentation is introduced to assess the hardness of constituent phases before and after HER testing. Hole-expansion ratios of two dual-phase (DP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-06, Vol.817, p.141353, Article 141353
Hauptverfasser: Song, Eunji, Lee, Gun-Hee, Jeon, Hansol, Park, Bong June, Lee, Jung-Gu, Kim, Ju-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stretch-flangeability as a parameter of formability is measured on dual-phase (DP) and complex-phase (CP) steels by the hole-expansion ratio (HER), and nanoindentation is introduced to assess the hardness of constituent phases before and after HER testing. Hole-expansion ratios of two dual-phase (DP1, DP2) and one complex-phase (CP1) steels are measured as 51%, 126% and 136%, respectively. The primary site of void formation is found to be the interfacial boundary for DP1, the ferrite phase close to the martensite phase where numerous geometrically necessary dislocations (GNDs) are formed for DP2, and the martensite phase for CP1. The hardness ratio of the hard to soft phase is a key indicator of formability, and this introduces the stress concentration from strain disparity at the interfacial boundaries between the hard and soft phases. Here, it is founded that strain-hardenability of constituent phases depends on the hardness of the GND layer, and the strain disparity under deformation is determined by the GND layer hardness as well as the hardness ratio of the hard to soft phase. This study suggests the GND layer as a stress-dispersion layer and the hardness of GND layers in soft phases as a critical role in formability.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2021.141353