Linear resolutions and polymatroidal ideals

Let R = K [ x 1 , … , x n ] be the polynomial ring in n variables over a field K and I be a monomial ideal generated in degree d . Bandari and Herzog ( Eur. J. Combin. 34 (2013) 752–763) conjectured that a monomial ideal I is polymatroidal if and only if all its monomial localizations have a linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2021-10, Vol.131 (2), Article 25
Hauptverfasser: Mafi, Amir, Naderi, Dler
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R = K [ x 1 , … , x n ] be the polynomial ring in n variables over a field K and I be a monomial ideal generated in degree d . Bandari and Herzog ( Eur. J. Combin. 34 (2013) 752–763) conjectured that a monomial ideal I is polymatroidal if and only if all its monomial localizations have a linear resolution. In this paper, we give an affirmative answer to the conjecture in the following cases: (i) height ( I ) = n - 1 ; (ii) I contains at least n - 3 pure powers of the variables x 1 d , … , x n - 3 d ; (iii) I is a monomial ideal in at most four variables.
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-021-00620-z