Linear resolutions and polymatroidal ideals
Let R = K [ x 1 , … , x n ] be the polynomial ring in n variables over a field K and I be a monomial ideal generated in degree d . Bandari and Herzog ( Eur. J. Combin. 34 (2013) 752–763) conjectured that a monomial ideal I is polymatroidal if and only if all its monomial localizations have a linear...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2021-10, Vol.131 (2), Article 25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
=
K
[
x
1
,
…
,
x
n
]
be the polynomial ring in
n
variables over a field
K
and
I
be a monomial ideal generated in degree
d
. Bandari and Herzog (
Eur. J. Combin.
34
(2013) 752–763) conjectured that a monomial ideal
I
is polymatroidal if and only if all its monomial localizations have a linear resolution. In this paper, we give an affirmative answer to the conjecture in the following cases: (i)
height
(
I
)
=
n
-
1
; (ii)
I
contains at least
n
-
3
pure powers of the variables
x
1
d
,
…
,
x
n
-
3
d
; (iii)
I
is a monomial ideal in at most four variables. |
---|---|
ISSN: | 0253-4142 0973-7685 |
DOI: | 10.1007/s12044-021-00620-z |