In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants
Mutations in the superoxide dismutase 1 (SOD1) gene are related to familial cases of amyotrophic lateral sclerosis (fALS). Here we exploit in-cell NMR to characterize the protein folding and maturation of a series of fALS-linked SOD1 mutants in human cells and to obtain insight into their behaviour...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-11, Vol.5 (1), p.5502 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mutations in the superoxide dismutase 1 (SOD1) gene are related to familial cases of amyotrophic lateral sclerosis (fALS). Here we exploit in-cell NMR to characterize the protein folding and maturation of a series of fALS-linked SOD1 mutants in human cells and to obtain insight into their behaviour in the cellular context, at the molecular level. The effect of various mutations on SOD1 maturation are investigated by changing the availability of metal ions in the cells, and by coexpressing the copper chaperone for SOD1, hCCS. We observe for most of the mutants the occurrence of an unstructured SOD1 species, unable to bind zinc. This species may be a common precursor of potentially toxic oligomeric species, that are associated with fALS. Coexpression of hCCS in the presence of copper restores the correct maturation of the SOD1 mutants and prevents the formation of the unstructured species, confirming that hCCS also acts as a molecular chaperone.
Mutations in the enzyme superoxide dismutase 1 (SOD1) underlie a form of neurodegenerative disease called amyotrophic lateral sclerosis. Here the authors employ in-cell NMR to show that SOD1 mutants adopt unstructured conformations that are unable to bind zinc and may form toxic SOD1 aggregates. |
---|---|
ISSN: | 2041-1723 |
DOI: | 10.1038/ncomms6502 |