Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel Part III: assessment of residual stresses from small-scale to real component welds

For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Welding in the world 2021, Vol.65 (9), p.1671-1685
Hauptverfasser: Schroepfer, D., Kromm, A., Lausch, T., Rhode, M., Wimpory, R. C., Kannengiesser, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high strength in as-welded state, and increased susceptibility to stress relief cracking (SRC) during post-weld heat treatment (PWHT). Previous research of SRC in creep-resistant steels discussed mainly thermal and metallurgical factors. Few previous findings addressed the influences of welding procedure on crack formation during PWHT considering real-life manufacturing conditions. These investigations focus on effects of welding heat control on stresses during welding and subsequent PWHT operations close to realistic restraint and heat dissipation conditions using a special 3D testing facility, which was presented in parts I and II of this contribution. Part III addresses investigations on residual stress evolution affecting crack formation and discusses the transferability of results from large-scale testing to laboratory-scale. Experiments with test set-ups at different scales under diverse rigidity conditions and an assessment of the residual stresses of the weld-specimens using X-ray (surface near) and neutron diffraction analysis (bulk) were performed. This study aims to provide a way of investigating the SRC behaviour considering component-specific residual stresses via small-scale testing concepts instead of expensive weld mock-ups.
ISSN:0043-2288
1878-6669
DOI:10.1007/s40194-021-01101-7