Some generic fractal properties of bounded self-adjoint operators

We study generic fractal properties of bounded self-adjoint operators through lower and upper generalized fractal dimensions of their spectral measures. Two groups of results are presented. Firstly, it is shown that the set of vectors whose associated spectral measures have lower (upper) generalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2021-10, Vol.111 (5), Article 114
Hauptverfasser: Aloisio, Moacir, Carvalho, Silas L., Oliveira, César R. de
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study generic fractal properties of bounded self-adjoint operators through lower and upper generalized fractal dimensions of their spectral measures. Two groups of results are presented. Firstly, it is shown that the set of vectors whose associated spectral measures have lower (upper) generalized fractal dimension equal to zero (one) for every q > 1 ( 0 < q < 1 ) is either empty or generic. The second one gives sufficient conditions, for separable regular spaces of operators, for the presence of generic extreme dimensional values; in this context, we have a new proof of the celebrated Wonderland Theorem.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-021-01459-1