Sensitivity Analysis of Optimal Control Problems Governed by Nonlinear Hilfer Fractional Evolution Inclusions
This article studies sensitivity properties of optimal control problems that are governed by nonlinear Hilfer fractional evolution inclusions (NHFEIs) in Hilbert spaces, where the initial state ξ is not the classical Cauchy, but is the Riemann–Liouville integral. First, we obtain the nonemptiness an...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2021-12, Vol.84 (3), p.3045-3082 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article studies sensitivity properties of optimal control problems that are governed by nonlinear Hilfer fractional evolution inclusions (NHFEIs) in Hilbert spaces, where the initial state
ξ
is not the classical Cauchy, but is the Riemann–Liouville integral. First, we obtain the nonemptiness and the compactness properties of mild solution sets
S
(
ξ
)
for NHFEIs, and also establish an extension Filippov’s theorem. Then we obtain the continuity and upper semicontinuity of optimal control problems connected with NHFEIs depending on a initial state
ξ
as well as a parameter
λ
. Finally, An illustrating example is given. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-020-09739-3 |