Aggravated stress fluctuation and mechanical size effects of nanoscale lamellar bone pillars

The size effects of mechanical properties influence the microdeformation behaviors and failure mechanisms of hierarchical lamellar bones. Investigations of the continuous deformation behaviors and structure–behavior–property relationships of nanoscale lamellar bones provide essential data for reduci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2021-09, Vol.13 (1), Article 61
Hauptverfasser: Ma, Zhichao, Qiang, Zhenfeng, Guo, Chaowei, Jiang, Yue, Zhao, Hongwei, Wen, Cuie, Ren, Luquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The size effects of mechanical properties influence the microdeformation behaviors and failure mechanisms of hierarchical lamellar bones. Investigations of the continuous deformation behaviors and structure–behavior–property relationships of nanoscale lamellar bones provide essential data for reducing the risk of fracture. Here, five pillars with diameters ranging from 640 to 4971 nm inside a single lamella were fabricated. In situ pillar compressive tests inside a scanning electron microscope directly revealed the diameter-dependent enhanced strength, ductility, and stress fluctuation amplitude. Real-time observations also revealed the segmented deformation and morphological anisotropy of pillars with smaller diameters and the slight elastic recovery of pillars with larger diameters. The critical diameter leading to the brittle-to-ductile transition was confirmed. The “analogous to serrated flow” stress fluctuation behaviors at the nanoscale exhibited a significant size effect, with coincident fluctuation cycles independent of diameter, and each cycle of the fluctuation manifested as a slow stress increase and a rapid stress release. The discontinuous fracture of collagen fibrils, embedded enhancement of hydroxyapatite crystals, and layered dislocation movement on the basis of strain gradient plasticity theory were expected to induce cyclical stress fluctuations with different amplitudes. Significant size effect and stress fluctuation of nanoscale lamellar bone pillars with diameters ranging from 640 to 4971 nm inside a single lamella. A size effect-induced brittle-to-ductile transition was revealed, the stress fluctuation behaviors were elaborated through a layered dislocation movement theory on the basis of strain gradient plasticity theory.
ISSN:1884-4049
1884-4057
DOI:10.1038/s41427-021-00328-6