Automated defect detection in oil-lubricated parts and units of D30KP/KP-2 aircraft gas turbine engines by results of microwave plasma method

Classifier between states of "normal/high maintenance/defective" for oil-lubricated parts and units of D30KP/KP-2 aircraft gas turbine engines is developed. The classifier is based on "random forest" machine learning algorithm. It is trained on results of microwave plasma measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-11, Vol.1384 (1), p.12017
Hauptverfasser: Hodunaev, A Y, Drokov, V G, Drokov, V V, Murishenko, V V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classifier between states of "normal/high maintenance/defective" for oil-lubricated parts and units of D30KP/KP-2 aircraft gas turbine engines is developed. The classifier is based on "random forest" machine learning algorithm. It is trained on results of microwave plasma measurements of metallic admixture in oil filter wash samples of engines. Technical state for train set was determined earlier by expert method and was confirmed by factory disassembly study. Classifier result for states "normal/high maintenance/defective" matches expert method in 73 %, 52 %, 66 % respectively.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1384/1/012017