On the two-component generalization of the (2+1)-dimensional Davey-Stewartson I equation

The geometric-gauge equivalent of the famous Ishimori spin equation is the (2+1)-dimensional Davey-Stewartson equation, which in turn is one of the (2+1)-dimensional generalizations of the nonlinear Schrodinger equation. Multicomponent generalization of nonlinear integrable equations attract conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2019-11, Vol.1391 (1), p.12160
Hauptverfasser: Serikbayev, Nurzhan, Nugmanova, Gulgassyl, Myrzakulov, Ratbay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The geometric-gauge equivalent of the famous Ishimori spin equation is the (2+1)-dimensional Davey-Stewartson equation, which in turn is one of the (2+1)-dimensional generalizations of the nonlinear Schrodinger equation. Multicomponent generalization of nonlinear integrable equations attract considerable interest from both physical and mathematical points of view. In this paper, the two-component integrable generalization of the (2+1)-dimensional Davey-Stewartson I equation is obtained based on its one-component representation, and the corresponding Lax representation is also obtained.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/1391/1/012160